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Abstract 
 
 

 The Department of Defense calls for long-range forecasts to aid in the planning of 

operations.  The goal of this research was to explore the feasibility of predicting, one 

month in advance, the total monthly cloud cover over the country of Afghanistan.  In an 

attempt to reach this goal, the following objectives were achieved: 1) climatological 

synoptic study of Afghanistan; 2) survey of Real Time Nephanalysis, outgoing longwave 

radiation (OLR), and surface observational data; 3) examination of teleconnection indices 

and sea surface temperatures; 4) standard statistical analysis for prediction; and 5) 

classification tree analysis (CART).  In addition, due to current world events, CART 

analysis was also applied over the country of Iraq (see Appendix C).   

 Data were examined using standard statistical regression techniques, including 

linear and multiple linear regression, and then CART analysis was used for exploring 

possible concealed predictive structures.  Standard statistics showed a strong negative 

correlation between monthly average OLR and surface observational total cloud cover 

from the fall through spring months.  However, linear regression revealed very weak 

relationships between the predictor and predictand variables.  As well, CART results 

contained misclassification rates that exceeded established thresholds for operational use.  

Further studies using CART for atmospheric science applications should be pursued.  
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DATA MINING ATMOSPHERIC/OCEANIC PARAMETERS IN THE 
DESIGN OF A LONG-RANGE NEPHELOMETRIC FORECAST TOOL 

 
I.  Introduction 

 
 
 
 Long-range forecasting is a daunting task for meteorologists.  Many agencies rely 

on extended-range climate forecasts to better anticipate the needs and behaviors of 

industries.  As well, the Department of Defense (DoD) requires long-range forecasts to 

aid in the monitoring and anticipation of weather impacts upon operations, planning, and 

their influence on the stability and welfare of nations.  For example, previous theses at 

AFIT which where requested by DoD agencies examined long-range forecasting with the 

use of sea surface temperatures (SST) and teleconnection indices (TI) to predict events 

like sustained winds, seasonal weather severity, and heating/cooling degree-days 

(Freestrom, Schroeder, Randall, 2002).  Other published studies outside of DoD, included 

forecasted rainfall amounts in Africa (Jury, 1995) and snow squalls and ice cover over 

Canada (Assel & Burrows, 1992), to name just a few. 

 Commanders preparing for operations around the world are well schooled in the 

fact that victory depends upon knowing the changing weather conditions throughout the 

entire battle campaign.  As a result, they often charge their indigenous weather units or 

agencies such as the Air Force Combat Climatology Center (AFCCC) to anticipate the 

atmospheric conditions in the area of operations well into the future.  Unfortunately, there 

are few tools in the Air Force Weather inventory that meet the basic requirements of such 

operations.  Therefore, the goal of this research is to develop a predictive model, by 

statistical and classification tree analysis (CART), for CENTCOM use in forecasting 

mean monthly total cloud cover over Afghanistan. 
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1.1 Statement of the Problem  
 
 

Extended-range forecasts are based upon the science of macrometeorology.   

However, Franz Baur (1951) suggested there were two fundamental problems with 

macrometeorology.  The first problem was whether a real Grosswetter (large-scale flow) 

actually existed.  If so, it was necessary to statistically show from a lengthy period of 

record, whether or not the likelihood of occurrence of the meteorological phenomena that 

determine weather are constant (aside from the annual influence) or subject to variation 

(Baur, 1951).   Secondly, Baur believed those statistical probabilities of the 

meteorological elements were proven not to be constant from year to year.  Thus, some 

governing parameters existed which created the variations of the probabilities.  Baur 

believed terrestrial processes (ocean currents, ice conditions, volcanic eruptions) were 

linked to the general atmospheric circulation but offered only causal significance or that 

these processes merely shaped the macrometeorological event.  This research attempts to 

use large-scale atmospheric indicators and examine them with modern statistical 

techniques to produce extended-range forecasts.   

SST anomalies are closely monitored and modeled by climatologists as they are 

known to impact global circulations and their accompanying distribution of cloud 

patterns and hydrometeors.  Trenberth (1981) noted that changes in tropical SST patterns, 

as a source of atmospheric circulation anomalies, were associated largely with the 

location of convergence zones, rainfall, and large-scale latent heat release.  Although the 

precise relationships of these couplings are rather intricate, it is widely known that areas 

of convergence exist over the warmest ocean waters.  For example, evidence of large SST 

anomalies in the tropical and North Pacific were linked to U.S. drought conditions during 
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1988 and flooding events during the summer of 1993 (Ting, 1997).  As well, winter 

studies focused on the El Niño-La Niña anomaly events, concluded that SSTs greatly 

influence atmospheric circulation patterns.  The winter study result was proven by the use 

of atmospheric global circulation models with fixed tropical Pacific SST values (Ting, 

1997). 

 Another atmospheric signal employed by scientists are global teleconnection 

patterns.  They are relations between large-scale global pressure centers, acknowledged 

through the presence of geophysical methods, by statistical correlations (Glantz, 1991).  

The origin and distribution of these pressure patterns are forced by seasonal changes of 

insolation linked with responses of ocean bodies and landmasses to heating.  The 

response of oceans to sea surface temperatures, driven by the sun’s energy is small due to 

the oceans’ greater ability to retain heat.  Unlike oceans, landmasses have a lesser 

capacity for storing heat.  Thus, land masses tend to remain colder in winter and warm up 

noticeably in summer months.  This results in pressure gradients associated with the 

dynamic response to the land-ocean temperature and heating disparities.  These pressure 

gradients strengthen circulation patterns thus illustrating the symbiotic relation between 

the atmosphere and the oceans (Trenberth, 1981).  A popular teleconnection is that of the 

Southern Oscillation (SO).  The SO refers to an oscillation in the difference of sea surface 

pressures between Darwin, Australia and the south-central Pacific at Tahiti.  When the 

waters of the eastern Pacific are abnormally warm (an El Niño event), sea level pressure 

drops in the eastern Pacific and rises in the western Pacific near Darwin.  The reversal in 

the pressure gradient is accompanied by a weakening of the low-latitude easterly trade 

winds.  This index has been related simultaneously to severe droughts and floods across 
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several continents (Ting, 1997).  Although these pressure oscillations largely influence 

the weather of the tropical regions, their affect elsewhere is less understood due to the 

seasonal changes and the annual variability of the SO. 

  
1.2 Scope of Research 
 
 

In order to provide DoD with a predictive model for cloud cover over 

Afghanistan, this research is structured to first understand the climatic controls and 

general circulation of the air masses that affect Afghanistan.  Knowledge of the overall 

weather patterns and the annual movement of weather systems through the region is vital 

to understanding cloud cover patterns that exist over the area.  After all possible methods 

of standard statistical analysis are exhausted, a data mining technique using CART, a 

form of binary recursive partitioning, is used to further determine if any predictability 

exists with present knowledge.     

 
1.3 Research Objectives 
 
 

This research examines the fluctuation of SSTs and atmospheric circulation 

patterns and their effect on the mean cloud cover over Afghanistan.  Employing the use 

of standard statistical methods first, and then classification trees, this study creates a 

predictive model for forecasting one month in advance, the trend in cloud cover over 

Afghanistan.  If the results were promising, the same methodology would be applied to 

the three regions of Afghanistan as well.  This study examines the feasibility of using the 

mean monthly total cloud cover parameter derived from the Real Time Nephanalysis 

(RTNEPH) model and from surface observations.  As well, the prospect of using 
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outgoing longwave radiation (OLR) values as a proxy for cloud cover is considered.  

These predictands are then compared to SST values and known global teleconnection 

indices (TIs) (predictors) to produce the predictive model.  A flow chart is provided to 

help illustrate the research process (Figure 1).  The following specific objectives that are 

necessary to achieve the overall goal of this research are: 

1.  Perform a climatological overview of the general circulation and air masses 

affecting Afghanistan.  

2.  Define the TI and SST indices and the cloud parameters pertinent to the study.  

3.  Collect SST data, RTNEPH model data, OLR data, surface observational data, 

and TI data.   

4.  Perform a thorough statistical examination to compare the predictands to the 

global TIs and SSTs. 

5.  Use data mining CART analysis on the SST and TI data (predictors) by mining 

both sets for predictive relationships of the predictands.  Develop forecast 

decision trees to assist in choosing particular teleconnection indices and/or SSTs 

that are suitable predictors (in other words, the indices with the best forecast 

relationship to the observed total cloud cover or OLR data).   

6.  After detecting all statistical relationships that may exist, produce a predictive 

model for CENTCOM to use in forecasting total cloud cover over Afghanistan. 
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Objective 7: 
Presentation of results and 

recommendations 

Objective 6: 
Develop forecast model for 

predicting cloud cover 

Objective 5: 
Data mining CART applications 

for prediction 

Objective 4: 
Standard statistical analysis for 

prediction 

Objective 3: 
Examine TI and SST data 

Objective 2: 
Climatological survey of 

RTNEPH, OLR, and surface 
observational data

Objective 1: 
Climatological synoptic study 

Challenge: 
Extended-range cloud cover 

forecast for Afghanistan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  A flow-chart diagram of the research process. 
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II.  Background and Literature Review 
 
 
 
2.1 General Climate and Weather Patterns Review 
 
 

Knowledge of the climate and weather patterns must be gained in order to 

appreciate the cloud cover conditions existing over Afghanistan.  An understanding of 

sea surface temperatures, teleconnection indices, the derivations of cloud cover values, 

and OLR is also required. 

Afghanistan consists of mainly arid to semi-arid climates.  Summers are very hot 

except in the high mountains as a thermal low prevails over southern Asia brought on by 

the high sun angle during this time of year (Figure 2).  The thermal low produces hot, 

cloudless, dusty conditions over most of the country except in the highest mountains, 

over which cirrus and some cumulus clouds are found.  Occasionally in the eastern parts 

of Afghanistan, moist, monsoonal air infiltrates from the Arabian Sea, providing low-

level moisture and cloudiness.   

The fall months experience a change from the average pressure patterns of 

summer to winter, as the thermal low decreases in intensity due to the low angle of the 

sun as it retreats equatorward (Figure 3).  During the winter, an area of intense, 

semipermanent high pressure resides over the Asian continent interior (due to the vast 

landmass) bringing extremely cold temperatures to the region (Figure 4).  The intensity 

and coverage of the high pressure system gradually decreases with the passage of the 

spring months and the onset of the thermal low that appears again over the southern 

portion of Asia in the summer months.  In a general sense, the mean pressure decreases 

from north to south, often resulting in a northerly flow.  Yet, during winter and spring, 

 7



the passage of low-pressure systems disrupts the general pressure distribution and flow.  

The frequent passage of pressure systems draws the warm dry air from the south, cold air 

from the north and moist air from the west (Mediterranean and Caspian Seas) (NIS, 

1970).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 
Figure 2.  Summer 850mb geopotential heights (modified from FLENUMMETOC 
DET, 2002). 
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2.1.1 Air Masses.  Air mass variability is greatest starting in late fall to early 

spring as low-pressure systems and accompanying fronts alter the weather patterns.  Cold 

air enters Afghanistan from the Mediterranean region, Eastern Europe and Central Asia.  

The cool moist air from the Mediterranean and Eastern Europe normally follows in the 

wake of depressions from the west.  Air originating from Eastern Europe is generally 

colder due to the higher latitudes with trajectories over land.  Some moisture is added as 

the air masses cross over the Black Sea (NIS, 1970).  Air masses that move southward 

from Central Asia are usually colder and pick up moisture over the Caspian Sea, yet most 

cloudiness and precipitation is depleted by the time it reaches the high mountain ranges 

of Afghanistan.  This is due to the orographic lifting, where rising air cools and expands, 

forming clouds.  As the air continues to rise, the water vapor continues to condense and 

produce precipitation.  Warm, dry air masses traveling eastward from Iraq and the 

Arabian Peninsula also affect Afghanistan when circulations accompany depressions 

from the west during the cooler seasons (NIS, 1970).   

2.1.2 Cyclones and Fronts.  During the fall season, much of the precipitation for 

the region originates in extratropical cyclones that develop in proximity to the 

Mediterranean basin.  These rather weak depressions move eastward, and well north of 

Afghanistan (Figure 5).  The lows often pass north of Afghanistan and slowly migrate 

southward through the area as the seasons evolve into winter (Figure 6) and spring.  By 

the end of spring, most systems have returned to their northerly tracks (Figure 7).  The 

summer months are void of such transitory cyclones (NIS, 1970).  Cold fronts that often 

accompany the Mediterranean lows during the colder months contribute to the unsettled 

weather, increasing cloudiness, precipitation, and thunderstorm occurrences.  Warm 
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fronts associated with the transitory lows usually move northeastward through the area 

but are rarely associated with significant rainfall (NIS, 1970).  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  Fall cyclone storm tracks (modified from NIS, 1970). 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Winter cyclone storm tracks (modified from NIS, 1970). 
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Figure 7.  Spring cyclone storm tracks (modified from NIS, 1970). 

            
  
2.2 Predictors 
 
 

2.2.1 Sea Surface Temperatures.  The oceans impact global atmospheric 

circulations by altering the amount of tropical/subtropical convection, which force large 

quantities of moisture into the upper levels of the atmosphere to be deposited elsewhere 

on the planet.  SSTs impact the atmosphere through the release of latent heat during 

evaporation, and can influence the variability of the climate of a region (e.g. El Nino).  

For these reasons, SSTs are examined over the globe and indices are created based on 

these temperature anomalies.  For example, in 1988 the U.S. experienced the worst 

drought on record resulting in tens of billions of dollars in agricultural losses, 
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contributing to thousands of deaths from heat stress and numerous forest fires.  After a 

thorough analysis of the drought and how it progressed, it was suggested that the primary 

cause was the alteration of the atmospheric circulation across North America brought 

about by changes in SSTs in the tropical Pacific (Trenberth, 1991). 

2.2.2 Teleconnection Indices.  There are several methods employed in calculating 

such indices and the SOI is computed by a simple formula of the standardized difference 

between the pressure in western Pacific at Darwin (D), Australia and the pressure in 

south-central Pacific at Tahiti (T) (U.S. CPC, 2002):  

 
   actual T pressure-mean T pressure –actual D pressure-mean D pressure     (1) 

   SOI=            standard deviation T                      standard deviation D      
   monthly standard deviation of D and T 
 
Other methods of computing teleconnection indices analyze assigned atmospheric 

variables at specific locations on the globe and correlate those values with other values 

within the respective domain (Barnston and Livezey, 1986).  This method is repeated 

until the locations with the highest amplitudes are found and labeled as the ‘centers-of-

action’ of low frequency variability. Generally, several core centers-of-action are used 

within a pattern, with the greatest isolated correlations being negative (Barnston and 

Livezey, 1986).  The third method is the rotated principle component analysis (RPCA), 

which incorporates the use of eigenvectors.  Eigenvectors are non-zero vectors which 

have their vector space linearly modified onto a vector which is a real number product 

multiplied by the original vector (Merriam-Webster, 2001).  Eigenvectors of the cross-

correlation matrix, which come from the time differences in the grid-point values of the 

selected meteorological parameter, are then scaled according to the amount of total 

variance they explain.  They are then rotated or linearly transformed with certain 
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constraints to derive the major circulation patterns (Barnston and Livezey, 1986).  

Readers are referred to the writings of Wilks (1995) for an in-depth explanation of the 

mathematics behind RPCA, as it is not the focus of this research.  To date, there are 

fourteen common indices, not including the previously mentioned SOI, employed at the 

Climate Prediction Center (U.S. CPC).  Each index is briefly reviewed in the following. 

 The North Atlantic Oscillation (NAO) pattern is a year round entity (Figure 8).  It 

consists of a north-south dipole of 700mb pressure anomalies.  One is centered over 

Greenland and the other of opposite sign covers the central latitudes of the North Atlantic 

Ocean between 35-45 degrees north.  Its positive phase reflects below normal heights and  
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negative

positive

Figure 8.  Phases of the NAO pattern (modified from U.S. CPC, 2002).  



pressure across the high latitudes and above normal heights and pressure over western  

Europe stretching across the Atlantic Ocean to the eastern U.S.  These phases are linked 

to changes in location and intensity of the jet stream over the Atlantic as well as 

modulations of the patterns of moisture and heat transport (U.S. CPC, 2002).  The Asian 

Summer pattern (ASU) is strongest and only significant during the summer months 

(Figure 9).  Unlike the other patterns mentioned, it is monopole in nature.  Southern Asia 

and northeastern Africa are the center points with the same sign.  In the positive phase, 

both areas experience above normal pressure heights at 700mb.  The single sign phases 

tend to persist for several years at a time (U.S. CPC, 2002).   

 

e
 

 

 

 

 

 

 

 

The East Atlantic (EA) is similar to the NAO

but May through August.  It has a north-south dipole

Atlantic Ocean.  Its center in the low latitude has a st

subtropical ridge’s location and intensity (U.S.CPC, 2
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positiv
Figure 9.  Positive phase of the ASU pattern (modified from U.S. CPC, 2002).
 structure.  It appears in all months 
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 The East Atlantic Jet (EAJ) pattern is the third pattern in the North Atlantic.  Yet, 

its duration is from April through August.  The north-south dipole anomaly centers are 

located near the eastern North Atlantic and Scandinavia, with the other near Northern 

Africa.  During its positive phase there is a strengthening of the westerlies in the central 

latitudes of Europe and eastern North Atlantic.  The negative phase reveals a strong split 

in the flow over the same regions (U.S. CPC, 2002). 

 The East Atlantic/West Russia (EATL/WRUS) pattern affects most of Europe and 

Asia during the year.  Its anomaly centers are found over the Caspian Sea and western 

Europe during the winter.  During the spring and fall, there are three centers; one over 

northwestern Russia, another over northwestern Europe and the third over the Portuguese 

coast.  Negative phases appear to be more common than positive phases.  The negative 

phase is associated with warmer and wetter conditions over Scandinavia and 

northwestern Russia while the opposite is seen over the Mediterranean Sea and Middle 

East (U.S. CPC, 2002). 

 The Scandinavia (SCA) pattern has a center over Scandinavia and the Artic Ocean 

with two other centers of opposite sign situated over western Europe and 

Mongolia/western Asia.  The SCA pattern exists in all but the months of June and July.  

The positive phase results in major blocking anticyclones over Russia and Scandinavia.  

The negative phase produces negative anomalies over the same regions (U.S. CPC, 

2002). 

 The Polar/Eurasian (POL) pattern is a winter phenomenon with an anomaly center 

over the polar region with two opposite centers over northeastern China and Europe.  It is 

a major indicator of the intensity of the circumpolar circulation and the associated 
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systems that occur over those areas.  The phases tend to last for several years at a stretch.  

Positive phases result in below normal heights in the polar region and above normal 

heights over Europe and eastern Asia.  The negative phase has the complete opposite 

affect (U.S. CPC, 2002). 

 A prominent pattern throughout the year is the West Pacific (WP).  The north-

south dipole arrangement during the winter and spring months have centers near the 

Bering Sea at the Kamchatka Peninsula and southeastern Asia and parts of the western 

North Pacific.  During these months, the strongest part of either the positive or negative 

phase often results in variations of the location and strength of the entrance region of the 

Pacific jet.  In the summer and fall months, the pattern becomes more wave-like and 

generates a third center over Alaska with an opposite sign over western North Pacific 

(U.S. CPC, 2002).  

 The East Pacific (EP) pattern is evident except in August and September.  It has a 

north-south dipole arrangement with a northern center over Alaska and the west coast of 

Canada and the southern center near Hawaii.  During the negative phases, a split flow is 

seen over the North Pacific.  This often restricts the movement of the Pacific trough, 

confining it to the western North Pacific.  The positive phase results in a deeper than 

normal trough in the Gulf of Alaska and positive height anomalies further south.  A 

stronger northeastward extension of the Pacific jet stream is seen toward western North 

America (U.S. CPC, 2002). 

 The North Pacific (NP) pattern exists from March through July.  One anomaly 

center is over the latitudes of the western and central North Pacific.  The other of 

opposite sign is located over eastern Siberia, Alaska, and the mountainous region of 
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North America.  During the positive phase the Pacific jet stream strengthens and moves 

further south from eastern Asia to the eastern North Pacific.  The negative phase 

produces the opposite affect (U.S. CPC, 2002). 

 The Pacific/North American (PNA) pattern consists of four centers and exists in 

all months except June and July.  The centers are; Aleutian Islands and southeastern U.S. 

and the opposite signed centers over Hawaii and the inter-mountain region of North 

America (during the winter and fall).  During the fall and summer, the mid latitude 

centers appear as a wave pattern originating from the eastern North Pacific.  The winter 

pattern shows the Aleutian center expanding over most of the northern latitudes.  With 

the arrival of spring, the same center recedes and remains in the Gulf of Alaska (U.S. 

CPC, 2002). 

 The Tropical/Northern Hemisphere (TNH) is most active from November through 

February.  One anomaly is center is found over the Gulf of Alaska with another of 

opposite sign over the Hudson Bay.  A weaker center of the same sign as the one in the 

Alaska is found in Mexico.  This pattern reveals important changes in the position and 

strength of the Hudson Bay Low.  The TNH regulates the flow of Canadian air southward 

and the transport of marine air into North America (U.S. CPC, 2002). 

 The Subtropical Zonal pattern (SZ), as it implies, is oriented in an east-west band 

at 25 degrees to 35 degrees North and is the only pattern having quasi-hemispheric 

longitudinal extent.  It is predominantly a summer pattern, often located amongst other 

teleconnection patterns (Barnston and Livezey, 1986). 

Lastly, the Pacific Transition (PT) is strongest from May through August.  A 

wavelike pattern of height anomalies extends from the Gulf of Alaska to the Labrador 
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Sea along the 40-degree latitude.  A center of opposite sign can be found over the eastern 

U.S. (U.S. CPC, 2002).   

The most relevant patterns for this research in forecasting Afghanistan cloud 

cover are probably the POL, SCA, EATL/WRUS, and the ASU (due to their relative 

proximity to Afghanistan).  All teleconnection indices can be obtained from the CPC on a 

monthly average dating back to the 1950s. 

 

2.3 Predictands 
 
 The predictands are the forecast variables being considered for this research.  

They are examined in the next chapter with the most suitable variable being applied in 

the classification tree analysis. 

 
2.3.1 Cloud Parameter.  The specific parameter is simply that of the mean monthly 

total cloud cover.  There are two sources used for obtaining this variable.  The first is 

surface observations, which generally are recorded on a three-hourly basis at most non-

U.S. observation sites.  The amount of coverage is recorded as a whole number and 

cannot exceed 8 (as in 8/8).  For aviation purposes, 1/8-4/8 describes scattered sky 

conditions, 5/8-7/8 is the threshold for defining a ceiling or broken sky, while 8/8 is an 

overcast sky.  The task of obtaining adequate observations is challenging considering the 

remoteness of the Afghanistan area, the cultural value placed on such scientific 

endeavors, and extreme political instability in the region over the last 25 years or so.  The 

surface observational data for this study was collected from AFCCC with data available 

from 1973-2001. 
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The second source of total cloud cover data comes from the RTNEPH model.  The 

RTNEPH is a real-time cloud analysis model operated by the U.S. Air Force.  It 

originated in the 1980’s when the Air Force was looking to replace its current 3-D 

Nephanalysis model (established in the 70’s) with something more robust.  RTNEPH was 

designed to compile data from both satellite and conventional sources and produce an 

automated cloud analysis at a 25 nm horizontal resolution (Kiess and Cox, 1988).  The 

model runs off data received from polar orbiting satellites using both visual and infrared 

sensors.  Unfortunately, updates over certain regions sometimes do not become available 

until hours later due to the return time of the satellites. 

The model uses a threshold technique for its analysis, in that when a satellite 

determines a temperature colder than its background or identifies a region brighter than 

the expected background, it would label that grid point with a cloud.  The opposite was 

true for temperatures warmer than the surrounding environment and thus would label that 

grid point as a clear area.  This method led to problems identifying low cloud types. 

Once the cloud analysis was completed, the model was manually corrected for 

errors using satellite data over areas of specific military interest to the U.S. (Bieker, 

2002).  Throughout the years, RTNEPH was updated with newer algorithms and more 

efficient programming languages.  By the early 1990’s, RTNEPH was slowly replaced by 

another program, the Cloud Prediction Forecast System I (CDFS I).  This system 

essentially consisted of better algorithms and the use of newer sensors onboard more 

orbiting satellites, to include NOAA polar orbiting satellites as well as the DMSP 

constellation.  The POR for available data is from 1984 to the present. 
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In June 2002, the Air Force began using the most robust of all prior models, the 

CDFS II system.  This version of the RTNEPH incorporates five geosynchronous and 

four polar orbiting satellites with multi-channel information.  CDFS II also includes all 

available surface cloud observations to produce hourly cloud analyses.  The model output 

currently produces a resolution of 6 nautical miles with plans at the Air Force Weather 

Agency (AFWA) to decrease it further.  Not only does CDFS II provide cloud amount, it 

also determines the cloud type for each of up to four layers of clouds at each grid point.  

Each layer has an identified base and top measured to the nearest 30 meters up to 3000 

meters, and for higher clouds, the nearest 300 meters is used.  Cloud amount is given in 

percentages to the nearest one percent (Bieker, 2002).  CDFS II provides more timely and 

accurate assessments of cloud data over previous versions of the RTNEPH model.  In 

addition to total cloud cover, the model produces other variables such as cloud type and 

cloud amount for up to four floating layers, as well as cloud base and cloud top heights. 

2.3.2 Outgoing Longwave Radiation.  OLR is a discernable variable in the 

distribution of clouds and is a significant parameter in the earth energy budget and 

climatic variability studies (Raval and Oort, 1994).  OLR is both emitted and absorbed by 

the atmosphere.  Atmospheric gases both absorb and emit selectively at different 

wavelengths, roughly between 3 and 100 microns.  As well, the atmosphere radiates back 

to space, with top-of-the-atmosphere radiation representative from the mid atmosphere 

(Della-Rose, 2002).  Clouds behave similarly to black bodies, absorbing a portion of the 

longwave radiation.  Thus, clouds have the ability to regionally increase the earth’s 

albedo when compared to cloudless areas.  For a specific location on the globe, the effect 

of a local cloud group on the regional energy balance depends on the cloud’s height, 

 21



optical depth of the cloud, insolation, and the characteristics of the terrestrial surface 

beneath the cloud (Hartmann, 1994).  The temperature of the emitting body restricts 

OLR, therefore polar regions and high cloud tops have lower OLR values.  Higher values 

are found where the surface is warm with dry cloudless conditions existing overhead.  

Anomalies of OLR over large time periods are indicators of climatic variations caused by 

large-scale phenomena such as the El Niño-Southern Oscillation event (Carleton, 1991).   
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III.  Data Collection and Review 

 
 
 

3.1 Data Collection 
 
 
 Five different data sets were examined in this research.  Teleconnection indices 

were obtained from the U.S. Climate Prediction Center.  The SST data was obtained from 

the Fleet Numerical Meteorology and Oceanography Detachment Asheville 

(FLENUMMETOC), OLR originated from the NCEP/NCAR Reanalysis Project  

(archived at NCDC) and processed by AFCCC for this research.  Surface observational 

and RTNEPH data sets were obtained directly from the AFCCC Database Section.   

 
3.1.1 Teleconnection Index Data.  The U.S. CPC is charged with calculating 

monthly teleconnection index values.  The period of record (POR) for the indices used in 

this research were computed from 1950 to 2001.  As previously mentioned, the SOI uses 

atmospheric pressure data from Darwin, Australia and the island of Tahiti (single point 

correlation method) to produce a standardized index; equation (1). 

For the remaining TIs, the U.S. CPC uses 700mb height data to better capture the 

variability in the formation and amplitude of the pressure patterns associated with the 

annual period of extratropical atmospheric circulation (U.S. CPC, 2002).  Initially, they 

identify which of the TIs have prominent patterns by Rotated Principle Component 

Analysis (RPCA), a multivariate statistical technique.  Next, the amplitudes of each 

pattern are computed.  

According to the U.S. CPC, this technique separates the primary teleconnection 

patterns for all months and permits time series of the amplitudes of the patterns to be 
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constructed.  The RPCA method is considered more robust to the grid-point analysis, 

usually determined from one-point correlation maps.  This is due to the fact that the TIs 

are identified based on the entire flow area, and not just from height anomalies at a few 

distinct locations (U.S. CPC, 2002).  Table 1 is provided to show the dominant TI 

patterns (as defined in section 2.2.2) throughout the year, derived by the U.S. CPC using 

RPCA. 

 
 
 
 
 
 

Table 1.  Months when specific teleconnection patterns are prominent.  
Numerical values indicate the mode number of the pattern for that calendar 
month (i.e., a one indicates that the pattern appears as the leading rotated mode 
for the northern hemisphere during the month).  If a pattern does not appear as 
a leading rotated mode in a given calendar month, no value is plotted (U.S. 
CPC, 2002). 
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The monthly, standardized TI values are computed after the dominant mode has 

been determined using the RPCA method.  The U.S. CPC calculates the observed 

amplitudes by using the least-squares regression analysis, where a best-fit line is 



computed so that the squared deviations of the observed points from that line are 

minimized.  The amplitudes are then built into a continuous time series, and standardized 

(mean equal to zero, variance equal to one).  Patterns that do not appear as leading modes 

for the month are not computed (U.S. CPC, 2002).        

 
3.1.2 Sea Surface Temperature (SST) Data.  SST data was obtained from 

FLENUMMETOC and has a POR from 1954-2001.  It was derived from two data sets: 

the Global Marine Climate Atlas (GMCA) and the Surface Marine Gridded Climatology 

(SMGC).  The GMCA contains surface marine observations (from ships and buoys) 

taken from the Comprehensive Oceanographic and Atmospheric Data Set (COADS) 

obtained from the National Center for Atmospheric Research (NCAR) from 1954-1996.  

The observations are gridded into 1-degree geographical boxes stored in a simplified data 

format.  Each observation, referenced spatially and temporally, may contain up to 

seventeen different physical quantities.  A data file contains all observations within the 1-

degree geographical box.  Each observation is 46 bytes in length with each variable 

stored as a two-byte signed integer.  In order to access the data from the files, an 

extraction routine in the C programming language is used.  The program accepts latitude 

and longitude ranges directly and uses that input to determine which files are necessary 

for the extraction.  When the bounding latitude and longitude values are specified, a 

geographic region is created and the extraction routine searches all the 1-degree boxes 

within the region and produces the desired parameter.   

For this study four regions were examined based upon availability of data and/or 

general proximity to Afghanistan: the Mediterranean Sea (boxed by upper left coordinate 

to lower right coordinate), 15E by 37N and 34E by 31N; Gulf of Guinea, 8W by 4N and 
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7E by 11S; Indian Ocean, 50E by 15S and 65E and 30S; Arabian Sea, 60E by 25N and 

75E by 10N (Figure 10).  All the observed SSTs reported within the defined regions were 

then separated by year then month.  A computed mean monthly SST in degrees Celsius 

was produced for each box for each year of every month in the POR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10.  Four regions of SSTs examined (modified from National 
Geographics, 2002). 

 

The Surface Marine Gridded Climatology (SMGC) was used for the 1997-2001 

SST POR.  It uses the same 1-degree latitude/longitude global grid as the GMCA 

providing a resolution of about 60 km.  The data source is from the Marine Atlas file 

archived at the National Climatic Data Center (NCDC).  SMGC describes the 

 26



environment at the surface of the world’s oceans for each month of the year represented 

(temporal resolution of one month), providing basic statistical measurements of eleven 

oceanic parameters.  The sources for the data are from automatic observing buoys, ship 

reports and logs, and foreign meteorological services.  The data sets are available in 

ASCII standard format and each record contains all the elements at a one-degree 

square/grid point.  The media was read using the format corresponding to the record 

position (30-34) for the SST.  All the one-degree grids in the overall latitude/longitude 

region are then summed and divided by the n observations to gain an overall mean SST 

for each month in each year. The sample size for each of the four regions range from 

several hundred to several thousand for each monthly mean value derived.  

3.1.3 Outgoing Longwave Radiation.  The OLR variable is from the NCEP 

Reanalysis data with an available POR of 1948-present.  The majority of the NCEP 

Reanalysis data information is available online at the following links: 

http://wesley.wwb.noaa.gov/reanalysis.html 

http://www.cdc.noaa.gov/cdc/data/ncep.reanalysis.derived.html 

AFCCC downloaded 52 years of monthly non-pressure level data and used wgrib, a 

gridded binary program, and its documentation at the website to extract upward longwave 

radiation at the top of the atmosphere (W/m2).  Using the grid structure described at the 

CDC link above, the point(s) that correspond to the three areas of interest (Figure 11) 

were computed.  Recall, if the results from the classification tree analysis were promising 

for the country as a whole, regional examination would be conducted.  The three 

locations were approved by AFCCC.  Due to the grid structure and the latitude/longitude 

of the areas, the following points were used: Area 1 (Northern Plains) 36.178N and 
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64.688E: midpoint average of four points (35,28), (36,28), (35,29) and (36,29).  Area 2 

(Central Highlands) is represented at 35.226N and 69.375E: from a single point (38,29).  

Area 3 (Southwestern Lowlands) is represented at 30.466N and 63.75E from an average 

of two points (35,31) and (35,32).  Table 2 shows the latitude/longitude coordinates 

representing each region. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11.  Three regions of Afghanistan used to represent OLR origins 
(modified from AFCCC, 2002).  

 
Table 2.  Coordinates representing the OLR regions in Afghanistan. 

 Region I J Longitude Latitude
Northern Plains 35 28 63.75 37.1305

36 28 65.625 37.1305
35 29 63.75 35.2264
36 29 65.625 35.2264

Central Highlands 38 29 69.375 35.2264
Southwestern Lowlands 35 31 63.75 31.4181

35 32 63.75 29.514
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After the points were identified, a Perl routine was written to use the output of wgrib to 

parse through the data and summarize the results.  A fourth area of interest was the entire 

country of Afghanistan, represented by 25 points.  This required a second Perl routine to 

be written.  The OLR units are W/m² with areas representing the country of Afghanistan 

and its three geographical regions. 

3.1.4 Cloud Parameter.  As mentioned previously, monthly mean total cloud 

cover is computed two ways, from surface observations and RTNEPH model output.  The 

surface observational data for this study was collected from AFCCC with a POR from 

1973-2001.  For Afghanistan as a whole, up to 27 sites where used in computing mean 

monthly values.  For the Northern Plains, Central Highlands and Southwestern Lowlands 

the number of sites are 11, 12 and 4, respectively (Figure 12).  The allocation of 

observational sites to specific regions resulted in the following: 

Northern Plains: points 1, 2, 3, 4, 5, A, B, C, D, E, F 

Central Highlands: points 6, 10, 11, 12, 13, 14, G, H, I, J, K 

Southwestern Lowlands: points 7, 8, 9, M 

The RTNEPH data was derived from grid boxes 21 and 22, which are shown in Figure 12 

by the dark and light stippling, respectively.  There were 24 separate files (one for each 

month).  Next, ArcView software (a powerful visualization tool which permits users to 

access records from existing databases and display them on maps) was used to determine 

the coordinates (I, J) within each box.  The coordinates were then placed into the 

applicable regions; Northern Plains, Central Highlands, and Southwestern Lowlands.  

Statistical Analysis System (SAS), an analytical software code, was then created to 
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Figure 12.  Map of observational sites (lettered/numbered solid circles) and 
RTNEPH grid boxes (light and dark stippling) (modified from AFCCC, 2002).  

query the large RTNEPH files for each box.  The SAS output was then transferred to an 

Excel spreadsheet for each of the three regions as well as Afghanistan as a whole, 

providing the mean total cloud cover values. 

 

3.2 Data Limitations 
 
   

With respect to the TIs, the 51-year POR was used in an effort to best identify 

trends and patterns.  The exact rotation method employed by the U.S. CPC is unknown.  

As well, RPCA is not a popular method in analysis of planetary waves as compared to the 

teleconnection method, which is less detached from the original data.  SST data also has a 

healthy POR yet issues of quality control (QC) in the oceanic measurements are 

unknown.  The marine data files contain measurements from many sources; ship deck 
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logs, ship weather-reporting forms, published ship weather observations, automated 

marine buoys, teletype reports and foreign meteorological services.  Data QC is left to 

computer checks, elimination of duplicate observations and manual editing of extremes.   

OLR is not derived directly from any single observed variable.  Rather it is 

derived from the model fields by the data assimilation.  Thus caution must be taken when 

interpreting results of the reanalysis for variables of this nature (Kalnay et al, 1996).  

Some of the involved variables in the radiation scheme are surface temperature, 

atmospheric H2O, CO2, O3 and most importantly, cloud fields.  The algorithm used to 

calculate this variable is applied across the entire POR.  When new sensors or observing 

systems are integrated into the algorithm, a one-year, parallel reanalysis is performed to 

isolate perceived changes.   

Total cloud cover from the surface observational data is subject to human error 

and consistency in the applied methodology of performing such tasks.  As mentioned in 

the previous chapter, this data may be suspect and is hindered by the decrease in 

observational sites due to political instability.  Also, the POR is much shorter than all but 

RTNEPH data. 

The RTNEPH POR is by far the smallest of all variables.  Data existed as far back 

as 1974 (in the 3DNEPH version) but due to unknown reasons was authorized for 

destruction at AFCCC.   
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IV.  Standard Statistical Methods and Results 
 
 
 

An examination of the data sets (using only Afghanistan as a whole and not the 

three regions) was necessary to aid in the explanation of the relationships between the 

predictor and predictand variables or reveal other issues not previously considered.  Next, 

for predictive purposes, linear regression was applied to investigate the relationship 

between the two types of variables and provide a quantitative measure of their strength.   

 
4.1 Data Examination 
 
 

4.1.1 Surface Observational and RTNEPH Data.  Since the surface observational 

and RTNEPH data sets both contained the same parameter (mean monthly total cloud 

cover, represented as a precentage), it was a logical assumption that the data would yield 

similar mean values.  To compare the means of both variables, a matched pairs analysis 

was performed on the overlapping portion of the POR between the two data sets.  This 

analysis uses a paired t-test in the examination.  The test statistic, t, is used to emphasize 

that the null distribution is a t distribution with n-1 degrees of freedom rather than the 

standard normal distribution.  

Assumptions:  Null hypothesis: Ho: msurface obs - mRTNEPH  = Do = 0 

Alternate hypothesis: Ha: msurface obs - mRTNEPH ∫ Do 

With a significance level of a = 0.05, the p-value (which is the smallest level of 

significance at which Ho would be rejected) must be less than the alpha level of 0.05 (a = 

probability (type I error)).  Figure 13 is a plot with an x-axis equal to the mean of the two 

responses and the y-axis equal to the difference of the two responses.  This graph is the 
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same as a scatterplot but rotated 45± to the right turning the original coordinates into a 

difference and a sum (SAS Institute Inc, 2002).   If the two means were the same, the 

dashed lines of the 95% confidence interval would have captured the zero line on the y-

axis.  The confidence region failed to capture the zero line, thus revealing there was a 

significant difference between the two means (p-value = 0.0001).  The graph also showed 

the RTNEPH means were consistently lower than the surface observational means.  

Possible reason for the RTNEPH bias may be due to the difficulty in discriminating the 

contrast of ice or snow-covered ground and low clouds directly above (Lowther et al., 

1991).  Or observers may view the sides of clouds in addition to cloud bottoms, and 

hence less of the sky dome is visible, as opposed to satellites which pass quickly 

overhead viewing the tops of clouds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D
iff

er
en

ce
: R

TN
EP

H
 –

 O
bs

 (%
) 

-40

-30

-20

-10

0

10

20

30

40

g
g

0 10 20 30 40 50 60 70 80

 
 
 
 
 

Mean: (Obs + RTNEPH)/2 (%)  
 

Figure 13.  Matched pairs test of RTNEPH means and surface observational 
means, which failed to capture the zero line.  Units are in percentage of total cloud 
cover. 
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4.1.2. OLR Data.  Next, to access the feasibility of using OLR as a surrogate or 

proxy for cloud cover, a correlation test (95% confidence level) was performed between 

the OLR, surface observational, and RTNEPH data sets, as well as, the mean of the 

RTNEPH and surface observational data combined.  Table 3 shows the resulting r-values 

for an annual time frame (-0.87, -0.89, and -0.89, respectively), as well as the monthly 

correlation values for the overlapping PORs. 

 
Table 3.  Correlation values showing the strength of the relationships of 
predictands on an annual and monthly basis for the overlapping PORs.  

Correlation OLR vs Obs OLR vs RTNEPH OLR vs. Mean(RTNEPH and Obs)

Annual -0.87 -0.89 -0.89
January -0.69 -0.75 -0.79
February -0.73 -0.67 -0.73
March -0.72 -0.68 -0.76
April -0.64 -0.74 -0.78
May -0.80 -0.83 -0.88
June -0.47 -0.73 -0.62
July -0.19 -0.6 -0.48
August -0.28 -0.82 -0.56
September -0.23 -0.32 -0.40
October -0.78 -0.65 -0.84
November -0.71 -0.75 -0.81
December -0.62 -0.85 -0.83

 

 

 

 

 

 

 

 

 

 

Overall, the results show relationships are stronger in the winter, autumn and spring 

months.  Therefore, it may be possible to use OLR as a proxy for either variable, but the 

r-values for RTNEPH vs. OLR are generally stronger throughout the year.  The summer 
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month values were less consistent perhaps due to observational error when accounting for 

the presence of cirrus cloud cover or culumus cloud cover over the mountain peaks. 

 Afghanistan’s OLR was then examined to see if there were noticeable differences 

over the entire reanalysis period.  The middle month of each season was selected for 

examination.  Figure 14 plots the time period in years along the x-axis and OLR in W/m2 

along the y-axis.  Both January and April appeared to show a distinct break in mean 

value.  To confirm if there was a statistically significant difference, a t-test was 

performed on the two time periods (1950-75 and 1976-2001) for each selected month 

with a significance level of 0.05.  Populations were tested for normality and equal 

variance. 
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 Figure 14.  Time-line of OLR monthly values from 1950-2001 using 

the middle month of each season.  
 

Figure 15 graphically shows the differences of the two time periods (W/m2 on the 

y-axis and the two time periods are levels on the categorical x-axis).  The top graphs in 
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Figure 15 reveal the two time periods had significantly different means.  The means-

diamonds failed to overlap each other and the p-values were 0.0068 for January and 

0.0002 for April, thereby rejecting the null hypothesis that the means are equal.  The 

bottom graphs show the opposite result; the means were significantly similar with p-

values of 0.8835 for October and 0.4133 for July.  Thus, the null hypothesis of equal 

means was not rejected.    
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Figure 15.  Graphical display of the t-test showing the OLR difference between the 
two time period means for each of the selected months. The means-diamond 
represent a sample mean and 95% CI.   The line across each diamond represents 
the group mean.  The vertical span of the diamond represents the 95% CI for each 
group.  The horizontal line across the entire x-axis is the total response sample 
mean. 
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Possible reasons for the difference may be related to the global increase in CO2 as 

seen in Figure 16.  Other reasons may be due to improvements of atmospheric 

measurements that contribute to the OLR algorithm; improved atmospheric sounder data 

circa 1975; improved cloud field and wind data; overall increase in observational data 

sets (Jenne, 2002).  However, it is unknown as to why only January and April show 

significant differences when all selected months are subjected to the same factors 

mentioned above for the same time frame. 
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Figure 16.  Global CO2 concentrations.  Note the slightly steeper slope 
from 1975-present. (modified from USGS, 2002).    
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4.2 Standard Statistical Analysis 
 
 

The overall goal in using linear regression in this research is to determine if any 

significant relationships exist between the three predictand variables and the SSTs and 

TIs.  Again, only the data for the country as a whole is examined and not the three 

regions.  A brief review of simple and multiple linear regression follows. 

 
4.2.1 Simple Linear Regression.  The simplest way to compare an independent 

variable X (predictor), and a dependent variable Y (predictand) is to use simple linear 

regression.  The goal of linear regression procedures is to fit a line through the points of a 

scatterplot.  Specifically, computing a line so that the squared deviations of the observed 

points from that line are minimized.  Thus, this general procedure is sometimes also 

referred to as least squares estimation.   

A line in a two-variable space is defined by the equation Y = ßº  + ß1  · x + ε.  The 

y-variable can be expressed in terms of a constant (ßº) and a slope (ß1) times the x-

variable plus ε, a random error term.  The constant is also referred to as the intercept, and 

the slope as the regression coefficient or B coefficient.  In order to establish the 

significance of the relationship, the value of the coefficient of determination (R2) is 

investigated, which is defined as the proportion of observed variation in the Y values that 

can be attributed to an approximate linear relationship between the values of Y and X or 

the ratio of explained variance to total variance.  In other words, the R2 value is an 

indicator of how well the model fits the data.  In order for a relationship to be determined 

as a viable solution to the problem, the p-value must be less than a value of 0.05 

(significance level) and the R2 value should be high enough to show a strong relationship.  
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Baur (1951) suggested an R-value of 0.80 was necessary when using statistics for 

extended-range forecasting, so that the standard error of the correlation was less than 0.60 

of the standard deviation.  As well, Baur recommended a significance level of 0.08 or 

better.  Thus, R2 greater than or equal to 0.64 was desired.  Finally, root mean square 

error (RMSE) relates how accurately a model can be used to forecast results.  The closer 

the RMSE value is to zero, the more precise a forecast is assumed to be.  The individual 

errors are squared, added together, divided by the number of individual errors, and 

finally, the square root is taken.  This single value summarizes the overall error of the 

model. 

4.2.2 Multiple Linear Regression (MLR).  The objective of MLR analysis is to 

construct a model relating a dependent (predictant) y-variable to more than one 

independent (predictor) x-variable.  Thus, the model equation looks like the following: Y 

= ßº  + ß1 ·  x1 + ß2 ·  x2 + ε.  In order for a relationship to be determined as a viable solution 

to the problem, the same requirements must be met as those stated previously. 

 
4.3 Removal of Seasonal Affects   

 
As a first step in linear regression, the seasonal trends in the predictand must be 

acknowledged in the regression model.  This issue became suspect by virtue of the results 

in Table 3, where the annual correlation value was larger than the monthly correlation 

values.  Specifically, seasonality in OLR was shown by higher values during the warmer 

months and lower values during the colder months, which is evident in Figure 14.  One 

method in dealing with seasonality in the predictand data is to model it by using dummy 

variables.  Dummy variables for the monthly data have a value of either one or zero: 
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example, D1 = 1 if month is January, zero otherwise.  To avoid multicollinearity (high 

correlation between the dummy variables), the number of dummy variables used is total 

months minus one or 11.  As Makridakis et al., (1998) explained, each dummy variable 

acts as a new explanatory variable.  The coefficients of the dummy variables reflect the 

average difference in the Y variable between those months and the omitted (zero value) 

month.  For example, the coefficient of D3 (March dummy variable) is a measure of the 

effect of March on the forecast variable compared to February (D2).  Table 4 reveals the 

proportion of variance in the OLR, explained by regressing on the dummy or explanatory 

variables is considerable and to a lesser extent, the surface observational and RTNEPH 

data.  For example, the R2 value in the first row of Table 4 reads, the amount of variance 

in OLR explained by the affects of seasonality is 0.94 or 94%.  A visual inspection of a 

correlogram (see Appendix A) may prove helpful.  

 

Table 4.  Multiple linear regression table of explained variance 
in the model due to the affects of seasonality in the predictand. 

 

 
R2 RMSE

OLR vs seasonality dummy variables 0.94 8.21
Surface Obs vs seasonality dummy variables 0.79 8.17
RTNEPH vs seasonal dummy variables 0.77 7.94

 

 

 

4.4 Monthly Regression Results   

 
With the seasonality dominating the amount of explained variance, it was necessary 

to examine the predictor/predictand relationships on a monthly level.  All three 

predictands were examined in the months of January, April, July, and October (Appendix 

B).  The predictor values came from the months prior to the predictands; December, 
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March, June, and September.  This combination was chosen due to time constraints.  All 

four SST area values were used as well as the TIs with dominate patterns during the 

respective month and with general regional proximity to Afghanistan.  None of the 

combinations showed any statistical significance, as previously set forth by Baur’s 

recommendations.  

In summary, the best results for each month follows: January RTNEPH vs. 

December POL pattern and Indian Ocean SST produced the highest R2  value of 0.44 with 

a p-value of 0.01.  April RTNEPH vs. March EP pattern provided an R2  value of 0.28 

with a p-value of 0.02.  The June Mediterranean SST and ASU pattern vs. July RTNEPH 

resulted in an R2  value of 0.36 with a p-value of 0.04.  Lastly, the October observations 

vs. the September Arab SST and the NAO pattern produced an R2  value of 0.28 with a p-

value of 0.02. 

 

4.5 Overall Results of Standard Statistical Analysis 

 

The challenge of using SSTs and TIs to forecast a mesoscale weather parameter 

(Afghanistan total cloud cover) is apparent in the results obtained using standard 

statistics.  It was shown that seasonality was the culprit in the production of high R2 

values.  The best R2 values when computed by month were few and not consistent in use 

of predictors or predictands.  Having exhausted all standard statistical methods of known 

relevancy, data mining through CART analysis would be the next logical step of gaining 

any significant results for forecasting total cloud cover.
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V.  CART Overview, Methods, and Results  
 
 

 
5.1 CART Overview 
 
  
 Classification and regression tree (CART) analysis is one of the main techniques 

employed in data mining.  Classification trees (also known as decision trees) are flow 

charts representing a predictive or classification model.  The tree is an arrangement of 

simple questions whose answers outline a decision path down the tree.  Due to its larger 

POR, OLR was chosen as the predictand.  In this research, the trees are used to identify 

nonlinear relationships or structures between the categorical classes of the OLR variable 

(below normal, normal, above normal) and one or more of the predictor variables (SSTs 

and TIs).  The objective is to build a decision tree that accurately distinguishes data 

among their respective categorical classes. 

The foundation of this method is a binary, recursive partitioning, tree-growing 

algorithm developed by Breiman et al. (1984).  The tree is built from the root node, 

which contains the entire data set of the categorical variable.  The data is then split based 

on selected splitting rules and questions originating from the predictor variables (TIs and 

SSTs) to create purer subsets of the data (referred to as child nodes).  In Figure 17 for 

example: the root node of the trees used in this study contains 52 observations of a 

categorical variable (such as monthly January OLR values over Afghanistan), separated 

into three classes; 26 observations are categorized as normal (a subjective call based on 

the climatology of the data set); 13 observations are categorized as below normal; and 

another 13 observations are categorized as above normal.  A splitting rule, known in 

CART as the Gini criterion, is then imposed, in an attempt to isolate the largest class, 
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which in this situation is the normal category with 26 observations in it, from the other 

classes.  Then a question is asked of the observations based on the predictor variable with 

the best split found, such as, “Was the December Mediterranean SST less than or equal to 

16.5ºC?”  If the answer is yes, those observations are moved into a child node down and 

to the left, otherwise they are moved to the child node down and to the right of the root or 

original node.  For instance, six above normal observations and one normal observation 

answer ‘yes’ to the question and are moved down from the root node to the left child 

node.  The right node thus contains 13 below normal observations, 25 normal 

observations and 7 above normal observations.  The left child node is now more pure 

than either the root node or the right child node because it contains mostly above normal 

observations.  The right child node would most likely be split further to better isolate the 

observations it contains.  This type of yes/no questioning recurs until the data cannot be 

split further.  

 

 

 

 

 

 

 

 

 

 

Figure 17.  An example of a splitting question imposed upon the root node in 
an attempt to isolate the largest class (normal).  The lower left box is a child 
node containing the yes responses and the lower right box is a child node 
containing the no responses. 

Was the December Mediterranean SST 
less than or equal to 16.5ºC?

Root node
Below normal 13

Normal 26
Above normal 13

Yes response
Below normal 0

Normal 1
Above normal 6

No response
Below normal 13

Normal 25
Above normal 7
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The major problems encountered when building a tree are deciding on the 

appropriate splitting rules, when to declare a node as a terminal node or to continue the 

splitting, and validating the accuracy of the computed tree. 

 5.1.1 Tree Splitting Rules.  The CART algorithm considers all possible splits for 

all variables in its analysis.  For example:  an OLR data set with 52 observations and 10 

possible predictor variables would consider up to 520 possible splits.  The best split is the 

one that produces the largest decrease in variety amongst the classes in the node (or one 

that produces the greatest homogeneity in the node).  To assist CART in finding these 

best splits, there are several ‘impurity functions’ to select from to incorporate into the 

decision process.   

5.1.1.1 Gini Impurity Function.  The Gini function seeks to isolate the largest 

class (normal class with 26 observations, as previously mentioned) in the dataset from the 

remaining classes.  This split searches for the best separation that produces a high amount 

of purity, (homogeneity or lack of variety) in the node.  With Gini, the impurity of the 

node is calculated by subtracting the sum of squared probabilities of each class (below 

normal/normal/above normal) within the given node summed over all levels of the 

categorical variable.  For instance, an impurity calculation for an OLR variable with a 

distribution of 13 below normal observations, 26 normal observations, and 13 above 

normal observations is as follows:  

1-[(13/52)2+(26/52)2+(13/52)2] = 0.626                                (2) 

5.1.1.2 Twoing Function.  The Twoing function operates by separating the classes 

into two groups.  Say, below normal and normal classes belong to group one while the 

above normal class belongs to group two.  Twoing then attempting to separate the two 
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groups in the descendant nodes of the tree.  In essence, it’s a measure of the difference in 

likelihood that a class appears in the left child node rather than the right child node.  The 

objective is to make the likelihood that a given class case goes to the left as different as 

possible from the probability that it goes to the right.  The function sums the absolute 

value of the probability differences over all classes.  The formula used is: 

∑ −÷•

j
RLRL tjptjppp ))()((4)(

2
,                                  (3) 

 where j and t represent a class and node, respectively (Brieman et al, 1984).  The factor 

(  is the probability of a split left times the probability of a split right (designed to 

favor even splits).  The term 

Lp )Rp⋅

)( Ltjp  is a conditional probability statement.  A similar 

method to the Twoing function is Ordered Twoing.  In a multi-class node, such as the 

situation in this research, the class groups are restricted to consist of adjacent classes, 

such as below normal paired with normal or normal paired with above normal classes but 

not below normal paired with above normal.  Overall, Brieman et al. (1984) noted that 

properties of the final tree were by and large insensitive to the choice of the impurity 

function, especially in the upper branches of the tree.  Therefore, both the Gini and 

Ordered Twoing methods were used in this research.   

5.1.2 Priors.  To further assist the algorithm in making the best splits, the 

researcher must inform CART of the nature of the categorical class distribution.  This is 

known as Priors.  Simply put, knowledge gained independently of experience.  In CART, 

there are several options.  Priors equal means each class (below normal/normal/above 

normal) has an equal probability of occurring.  Priors data means the probabilities of 

each class occurring match the total sample frequency (which is used in this research).   
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The remaining options are priors test, learn, mix, and specified; whose description are 

beyond the scope of this research.    

 5.1.3 Improvement Score.  When a child node has a majority of observations that 

belong to one class, such as the below normal category, the node is considered more pure 

than the parent node it originated from, thus, a decrease in impurity has occurred.  This is 

otherwise known as an improvement score, which measures how well the split improves 

the predictive performance of the tree.  Subtracting from the parent node impurity, the 

sums of the child node impurities multiplied by their respective probabilities of a random 

case falling to the left or right child node, calculates the improvement score (Breiman et 

al., 1984).  For example, if the impurity of a parent node was 0.626 (with 52 

observations) and the left child node impurity was 0.408 (with only 7 observations) and 

the right child node impurity was 0.588 (with 45 observations) and the random case 

probabilities were 7/52 and 45/52, respectively, the improvement score would be 0.626 - 

(0.408 x 7/52 + 0.588 x 45/52) or 0.062.  

5.1.4 Pruning.  The splitting process repeats until it is not possible to split the 

node further or until a pre-specified child node size is attained.  Breiman et al. (1984) 

recommended the approach of letting the splits continue until the terminal nodes are very 

small, as was done in this research.  Without limiting the splits, eventually “pure” 

classification will be achieved.  However, this “pure” result is usually unrealistic to 

follow as a conditional climatological tool, so this overgrown tree is then manually 

pruned upwards.  Manual upward pruning of the tree results in terminal nodes with 

observation numbers that are large enough that they convey a sense of meaningful 

physical interpretation. 
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 5.1.5 Cross-validation.  With a large data set, classical regression often yields 

adequate test results.  Ten-fold cross validation is valuable when no test sample is 

available and the learning sample is too small to have a test sample extracted from it.  

Ten-fold analysis grows the largest tree possible from the entire data set.  Then ten 

random sub-samples, of roughly equal size are formed from this learning tree.  The 

classification tree is computed ten times, each time leaving out one of the sub-samples 

from the computation.  The omitted sub-sample is used as a test sample for the cross-

validation.  Thus, each learning sample is used nine times as a learning sample and once 

as a test sample.  The error of all ten test samples is averaged to provide an overall 

estimate of the proportion of misclassified cases.  The overall goal in selecting the 

optimal tree is to have a balance between the proportion of misclassified cases and an 

adequate tree size (avoiding a lengthy complex logical condition in the final decision 

tree).   

 

5.2 CART Methodology and Results 

 
 Prior to the construction of classification trees, the monthly OLR data sets for the 

country of Afghanistan (if the CART results were acceptable, the regional data sets 

would then be analyzed) had to be categorized to provide meaningful results.  Each 

month, from September through May (from a climatological viewpoint, the cloudier 

months of the year) was standardized to make the distributions of values easy to compare 

against the mean.  For example, the September mean was subtracted from the observed 

September value and then divided by the September standard deviation.  After each 

month’s data set was standardized, it was divided into three categories.  Based on the 
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premise that OLR is strongly correlated in a negative manner to cloud cover, the middle 

50% of the values was labeled as normal monthly cloudiness, the two remaining 

categories with proportions of 25% apiece, were labeled as above normal and below 

normal total monthly cloud cover.  This division of the climatological categories was 

chosen based upon the relative usefulness of the predicted atmospheric variable for 

operational planners.  Decision makers trying to plan for weather conditions one month 

away would be more interested in the extreme conditions of total monthly cloud cover.  

Thus, a 25-50-25 percent division was considered more relevant.  Again, the 

climatological categories of below normal/normal/above normal monthly conditions were 

based on the 52-year POR data set.   

After categorizing the data sets, the monthly classification trees were constructed.  

In order to determine if a tree was the optimal tree for basing a predictive algorithm on, 

certain criteria were considered: 

1. general purity of the tree; 

2.  observation size of the terminal nodes; and, 

3.  misclassification rate, or error rate from the cross-validation test sample. 

Since there were no benchmarks for acceptable rates of misclassification, 

reviewing previously published research was critical.  Rodionov and Assel (2000) used a 

misclassification rate of 20% in their study of winter severity in the Great Lakes region 

and the relation to teleconnection pattern characteristics, essentially a nowcast.  Burrows 

and Assel (1992) conducted a study-using CART for predicting on a daily time frame, 

spatially averaged ice-cover in the Great Lakes region using a 10-20% error rate.  
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Unfortunately, long range forecast studies using CART were not discovered in previous 

research.   

However, Franz Baur (1951) warned the potential harm resulting from inaccurate 

long-range forecasts was greater the longer the time interval for which the prediction was 

created.  Baur had two suggestions when employing statistics for long-range forecasts: 

(1) the statistical method should be guided by physical considerations, and (2) the need 

for better-than-chance statistical associations that guarantee a successful forecast with a 

probability greater than 92%.  Taking these viewpoints into consideration, a 

misclassification rate of 25% in the test sample was determined as an adequate threshold 

for this research.  A rate higher than 25% may render the classification tree unstable or 

unsuitable for forecasting purposes.  Since the division of the 52-year data set is 

25%/50%/25%, the low threshold for misclassification affords the user to focus on the 

extreme conditions of monthly cloudiness that might operationally impede a campaign or 

permit it to proceed.   

5.2.1 Classification Trees.  After the OLR data (for Afghanistan as a whole) for 

each month was standardized and categorized, fully-grown trees were constructed for the 

nine months using CART.  All possible predictor variables were incorporated into the 

models.  The trees were then pruned by selecting the most effective n-values for the 

parent and child nodes, consideration of the relative purity of the nodes, improvement 

scores at each split, and the overall risk estimate determined by the cross-validation.   

An example of an overgrown classification tree is presented in Figure 18, which 

was constructed using October predictor variables compared to the categorized 

November OLR variable.  The misclassification rate was 38% for this overgrown tree, 
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and the overgrown tree shows the improvement scores beneath each split.  This tree has a 

rather lengthy logical condition statement with some weak improvement scores and 

poorly populated nodes.  Thus, it would benefit from pruning (albeit, at a cost to the 

misclassification rate), specifically at nodes 4, 7, and 10.
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Terminal
Node 1

Class Cases %
1 1 14.3
2 1 14.3
3 5 71.4

Terminal
Node 2

Class Cases %
1 0 0.0
2 0 0.0
3 2 100.0

Terminal
Node 3

Class Cases %
1 1 50.0
2 1 50.0
3 0 0.0

Terminal
Node 4

Class Cases %
1 0 0.0
2 0 0.0
3 2 100.0

Node 4
OCT_INDIAN <=   22.5
Class Cases %

1 1 25.0
2 1 25.0
3 2 50.0

Terminal
Node 5

Class Cases %
1 1 7.7
2 12 92.3
3 0 0.0

Node 5
OCT_ARAB <=   28.3
Class Cases %

1 11 28.2
2 24 61.5
3 4 10.3

Node 3
OCT_INDIAN <=   22.7
Class Cases %

1 12 27.9
2 25 58.1
3 6 14.0

Node 2
OCT_GUINEA <=   23.1
Class Cases %

1 12 26.7
2 25 55.6
3 8 17.8

Node 1
OCT_ARAB <=   27.6
Class Cases %

1 13 25.0
2 26 50.0
3 13 25.0

0.09

0.09

0.11

0.150.03

Figure 18a.  An overgrown November tree.  In Node 1, the second line contains the conditional statement.  A yes 
response follows down the next level and into the left node, while a no response follows down a level and to the 
right.  Slash marks indicate where pruning will occur.  Arab = Arabian SST (ºC); Guinea = Gulf of Guinea SST 
(ºC); Indian = Indian Ocean SST (ºC); Med = Mediterranean SST (ºC); SCA = Scandinavian TI. 
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Terminal
Node 6

Class Cases %
1 0 0.0
2 5 100.0
3 0 0.0

Terminal
Node 7

Class Cases %
1 0 0.0
2 1 20.0
3 4 80.0

Terminal
Node 8

Class Cases %
1 0 0.0
2 2 100.0
3 0 0.0

Node 9
OCT_SCA <=    1.8
Class Cases %

1 0 0.0
2 3 42.9
3 4 57.1

Node 8
OCT_SCA <=    0.5
Class Cases %

1 0 0.0
2 8 66.7
3 4 33.3

Terminal
Node 9

Class Cases %
1 2 66.7
2 1 33.3
3 0 0.0

Node 7
OCT_MED <=   23.1
Class Cases %

1 2 13.3
2 9 60.0
3 4 26.7

Terminal
Node 10

Class Cases %
1 6 100.0
2 0 0.0
3 0 0.0

Terminal
Node 11

Class Cases %
1 0 0.0
2 3 100.0
3 0 0.0

Terminal
Node 12

Class Cases %
1 2 100.0
2 0 0.0
3 0 0.0

Node 11
OCT_INDIAN <=   24.0
Class Cases %

1 2 40.0
2 3 60.0
3 0 0.0

Node 10
OCT_INDIAN <=   23.4
Class Cases %

1 8 72.7
2 3 27.3
3 0 0.0

Node 6
OCT_GUINEA <=   24.4
Class Cases %

1 10 38.5
2 12 46.2
3 4 15.4

0.16

0.13

0.04

0.03

0.04

0.06

Figure 18b.  November tree (continued) from Node 5. 
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Figure 19 shows the tree after the first pruning at Node 4 from Figure 18.  Node 4 

contained only four cases.  When the splitting question of the October Indian SST being 

less than or equal to 22.5ºC was implemented, CART sent two cases to the left child node 

and two to the right child node.  As a result, the improvement score was 0.03 with one 

case populating Class 1 (below normal) and Class 2 (normal), respectively, in the left 

child node and two cases populating Class 3 (above normal) of the right child node.  

Since the cases were spread out amongst all three classes, and a weak improvement score 

resulted, it was deemed more prudent not to let further splitting occur below Node 4.  

Thus, Node 4 became Terminal Node 3 and would be considered an above normal 

monthly-cloudiness condition.  As well, the misclassification rate has risen to 40%. 

Figure 19b shows the location of the second pruning by CART to be at Node 6, 

where the question was asked whether the October Mediterranean SST was less than or 

equal to 23.1ºC.  To permit splitting below Node 6 would result in weak improvement 

scores of 0.04 and 0.03 for the first and second split, respectively.  Thus, Node 6 would 

be classified as a normal monthly-cloudiness condition.  The resulting tree can now be 

seen in Figure 20, and the misclassification rate using this tree would be 44%. 

Figure 20b has the final pruning at Node 6.  Although CART would split the 

remaining cases fairly well beyond Node 6, the case numbers would become rather small 

and it is more prudent to stop at Node 6 and classify the node as a below normal, 

monthly-cloudiness condition.
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Terminal
Node 1

Class Cases %
1 1 14.3
2 1 14.3
3 5 71.4

Terminal
Node 2

Class Cases %
1 0 0.0
2 0 0.0
3 2 100.0

Terminal
Node 3

Class Cases %
1 1 25.0
2 1 25.0
3 2 50.0

Terminal
Node 4

Class Cases %
1 1 7.7
2 12 92.3
3 0 0.0

Node 4
OCT_ARAB <=   28.3
Class Cases %

1 11 28.2
2 24 61.5
3 4 10.3

Node 3
OCT_INDIAN <=   22.7
Class Cases %

1 12 27.9
2 25 58.1
3 6 14.0

Node 2
OCT_GUINEA <=   23.1
Class Cases %

1 12 26.7
2 25 55.6
3 8 17.8

Node 1
OCT_ARAB <=   27.6
Class Cases %

1 13 25.0
2 26 50.0
3 13 25.0

0.09

0.09

0.11

0.15

Figure 19a.  November tree after first pruning. 
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Terminal
Node 5

Class Cases %
1 0 0.0
2 5 100.0
3 0 0.0

Terminal
Node 6

Class Cases %
1 0 0.0
2 1 20.0
3 4 80.0

Terminal
Node 7

Class Cases %
1 0 0.0
2 2 100.0
3 0 0.0

Node 8
OCT_SCA <=    1.8
Class Cases %

1 0 0.0
2 3 42.9
3 4 57.1

Node 7
OCT_SCA <=    0.5
Class Cases %

1 0 0.0
2 8 66.7
3 4 33.3

Terminal
Node 8

Class Cases %
1 2 66.7
2 1 33.3
3 0 0.0

Node 6
OCT_MED <=   23.1
Class Cases %

1 2 13.3
2 9 60.0
3 4 26.7

Terminal
Node 9

Class Cases %
1 6 100.0
2 0 0.0
3 0 0.0

Terminal
Node 10

Class Cases %
1 0 0.0
2 3 100.0
3 0 0.0

Terminal
Node 11

Class Cases %
1 2 100.0
2 0 0.0
3 0 0.0

Node 10
OCT_INDIAN <=   24.0
Class Cases %

1 2 40.0
2 3 60.0
3 0 0.0

Node 9
OCT_INDIAN <=   23.4
Class Cases %

1 8 72.7
2 3 27.3
3 0 0.0

Node 5
OCT_GUINEA <=   24.4
Class Cases %

1 10 38.5
2 12 46.2
3 4 15.4

0.16

0.13

0.04

0.03

0.04

0.06

Figure 19b.  First pruning of November tree (continued) from Node 4. 
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Terminal
Node 1

Class Cases %
1 1 14.3
2 1 14.3
3 5 71.4

Terminal
Node 2

Class Cases %
1 0 0.0
2 0 0.0
3 2 100.0

Terminal
Node 3

Class Cases %
1 1 25.0
2 1 25.0
3 2 50.0

Terminal
Node 4

Class Cases %
1 1 7.7
2 12 92.3
3 0 0.0

Node 4
OCT_ARAB <=   28.3
Class Cases %

1 11 28.2
2 24 61.5
3 4 10.3

Node 3
OCT_INDIAN <=   22.7
Class Cases %

1 12 27.9
2 25 58.1

3 6 14.0

Node 2
OCT_GUINEA <=   23.1
Class Cases %

1 12 26.7
2 25 55.6
3 8 17.8

Node 1
OCT_ARAB <=   27.6
Class Cases %

1 13 25.0
2 26 50.0
3 13 25.0

0.09

0.09

0.11

0.15

Figure 20a.  November tree after second pruning. 
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Terminal
Node 5

Class Cases %
1 2 13.3
2 9 60.0
3 4 26.7

Terminal
Node 6

Class Cases %
1 6 100.0
2 0 0.0
3 0 0.0

Terminal
Node 7

Class Cases %
1 0 0.0
2 3 100.0
3 0 0.0

Terminal
Node 8

Class Cases %
1 2 100.0
2 0 0.0
3 0 0.0

Node 7
OCT_INDIAN <=   24.0
Class Cases %

1 2 40.0
2 3 60.0
3 0 0.0

Node 6
OCT_INDIAN <=   23.4
Class Cases %

1 8 72.7
2 3 27.3
3 0 0.0

Node 5
OCT_GUINEA <=   24.4
Class Cases %

1 10 38.5
2 12 46.2
3 4 15.4

0.16

0.04

0.06

Figure 20b.  November tree (continued) after second pruning.
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Figure 21 shows the final tree with only five splitting levels.  The overall 

misclassification rate is 48%, yet the logical condition is less complex than the original 

tree.  To read the logical condition of the tree, one would begin as follows:  If the October 

Arabian SST is less than or equal to 27.6°C, there is a 71% chance of above-normal total 

cloud cover for the month of November, otherwise a 29% chance exists of normal to 

below normal conditions (see terminal node 1).  If the October Arabian SST is greater 

than 27.6°C, then proceed to the next level down the tree.  If the October Guinea SST is 

less than or equal to 23.1°C, there is a very high likelihood of occurrence for above 

normal monthly-cloudiness.  If the October Guinea SST is greater than 23.1°C, then 

proceed to the next level down the tree.  If the Indian SST is less than or equal to 22.7°C, 

there is a 50% chance of above normal monthly-cloudiness, otherwise normal or below 

normal conditions may occur.  If the Indian SST is greater than 22.7°C, then proceed to 

the next level down the tree.  If the Arabian SST is less than or equal to 28.3°C, there is a 

92% chance of normal monthly total cloud cover, otherwise, a nine percent chance exits 

of below normal conditions.  If the October Arabian SST is greater than 28.3°C, then 

proceed to the next level down the tree.  If the October Guinea SST is less than or equal 

to 24.4°C, a 60% chance of normal conditions may occur.  If the October Guinea SST is 

greater than 24.4°C, there is a 73% chance of below normal monthly total cloud cover, 

otherwise, a 27% chance exists of normal total monthly cloud cover.  This classification 

tree correctly classified 27 out of 52 cases.  Again, the misclassification rate for this tree 

was 48%, well above the established threshold for extended range forecasting.  Most of 

the occurrences of misclassification were spread out among all three classes, signifying 

high impurity in the nodes.  The variables with the greatest contribution or importance to 
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Terminal
Node 1

Class Cases %
1 1 14.3
2 1 14.3
3 5 71.4

Terminal
Node 2

Class Cases %
1 0 0.0
2 0 0.0
3 2 100.0

Terminal
Node 3

Class Cases %
1 1 25.0
2 1 25.0
3 2 50.0

Terminal
Node 4

Class Cases %
1 1 7.7
2 12 92.3
3 0 0.0

Terminal
Node 5

Class Cases %
1 2 13.3
2 9 60.0
3 4 26.7

Terminal
Node 6

Class Cases %
1 8 72.7
2 3 27.3
3 0 0.0

Node 5
OCT_GUINEA <=   24.4
Class Cases %

1 10 38.5
2 12 46.2
3 4 15.4

Node 4
OCT_ARAB <=   28.3
Class Cases %

1 11 28.2
2 24 61.5
3 4 10.3

Node 3
OCT_INDIAN <=   22.7
Class Cases %

1 12 27.9
2 25 58.1
3 6 14.0

Node 2
OCT_GUINEA <=   23.1
Class Cases %

1 12 26.7
2 25 55.6
3 8 17.8

Node 1
OCT_ARAB <=   27.6
Class Cases %

1 13 25.0
2 26 50.0
3 13 25.0

0.09

0.09

0.11

0.15

0.16

Figure 21.  Final November tree after third pruning. 

 59



 60

the tree are the Arabian and Guinea SSTs, as they have the higher improvement scores 

and are incorporated twice into the tree. 

In this type of exploratory analysis, it is important to look at the data from various 

aspects.  Just because a tree may not use all the predictors doesn’t necessarily mean 

there’s an insignificant association with the predictand.  The reality may be that its effect 

was masked by other predictor variables.  The overgrown November tree did incorporate 

a TI (Scandinavian pattern) as a splitting criteria, however, the improvement scores were 

less significant.  When the manual pruning was completed, these nodes, which contained 

more impurity and smaller node cases, were dropped.  The overgrown tree had a lower 

misclassification rate of 38% but it came at a cost of a lengthy, complex logical 

condition, which is not realistic to follow as a forecast tool.  Had the misclassification 

rates met the threshold requirements, a final aspect to consider would be the improvement 

of the classification trees over the use of climatology, which is derived from the 52-year 

data set.  Recall that the middle 50% of the standardized data was labeled as normal 

monthly total cloud cover, while the remaining two 25% proportions were labeled as 

above normal and below normal monthly total cloud cover, respectively. 

Subtracting the climatological category value from the respective category value 

in the cross-validation test sample and then dividing by climatology would determine an 

improvement over climatology.  For example:  November’s below normal, normal, and 

above normal categories had tree accuracy rates from the cross validation test of 38%, 

69%, and 46%, in that order.  First subtract 25%, 50%, and 25% from those tree accuracy 

rates, respectively.  Then divide that difference by 25%, 50%, and 25% correspondingly, 

and the overall improvement scores are 52%, 38%, and 84%, respectively.  For example, 



when forecasting an above normal occurrence in November, the CART model would be 

52% more likely to accurately forecast the event than climatological tables.  

Figures 21-23 represent the pruned trees for the months of January, February, and 

March, in that order.  The January tree focuses on just two predictors, the December Gulf 

of Guinea SST and the Scandinavian TI.  In qualitative terms, this rule focuses on a 

narrow range of SST values and a TI pattern that is not substantially positive to make its 

best splits.  However, the improvement scores are relatively low, and the 

misclassification rate of 48% is rather poor.  The February tree also relies on two 

predictors, the January PNA TI and Mediterranean SST.  The best split is the first split 

and the remaining splits are relatively poor.  A warmer SST value and a slightly positive 

TI value leads to the best Class 1 (below normal) value of 80%.  In general, the opposite 

requirements lead to Terminal Nodes 1 and 2, which have slightly favorable case 

numbers for the normal and above normal category.  The March tree has a more complex 

logical condition based on the number of splits.  CART uses two TIs and the 

Mediterranean SST to construct the tree.  The best split again occurs at the top with an 

improvement score of 0.09 while the remaining splits are relatively low.   

Table 5 lists the misclassification rates for each month from September to May as 

well as the improvement scores over climatology.  Table 5 reveals that all the monthly 

classification trees exceeded the minimum threshold of a misclassification rate of 25%, as 

previously established to be of benefit for operational planning.  One possible reason may 

be that the physical processes that cause cloud formation may not be adequately captured 

by the predictor variables.  That leads to speculation there may exist other variables that 

could be incorporated into the CART analysis, which may increase the improvement 
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scores of the splits, leading to lower misclassification rates.  As well, the effects of chaos 

may exist to the extent that long-range forecasting up to one month in advance is 

currently unattainable. 

Patterns amongst the predictor variables within the classification trees were 

difficult to distinguish.  Nevertheless, it was noted that overall, the pruned classification 

trees used SSTs as predictors in eight out of nine months.  The Gulf of Guinea SST was 

used five times.  The Mediterranean and Arabian SSTs were used 4 times each, and the 

Indian Ocean SST was used just once.  TIs were incorporated by CART in only six of the 

nine months, with respect to the pruned trees.   

The CART analysis focused on OLR over Afghanistan as a whole.  In general, the 

classification tree results were not encouraging due to the high misclassification rates 

noted in the nine pruned trees.  Thus, it was deemed unnecessary to proceed in 

individually analyzing the regions of the Northern Plains, Central Highlands, and 

Southwestern Lowlands in hopes of procuring adequate misclassification rates. 
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Table 5. Cross-validation misclassification rates of pruned classification 
trees and improvements over climatology for the months of September 
through May. 

 
Misclassification rate Category Improvement over climatology

September 37% Below normal 16%
Normal 92%
Above normal 52%

October 46% Below normal 52%
Normal 16%
Above normal 148%

November 40% Below normal 52%
Normal 38%
Above normal 84%

December 40% Below normal no improvement
Normal 92%
Above normal 52%

January 48% Below normal no improvement
Normal 38%
Above normal 116%

February 40% Below normal 116%
Normal 30%
Above normal 180%

March 44% Below normal 52%
Normal 52%
Above normal 44%

April 54% Below normal no improvement
Normal 26%
Above normal 24%

May 37% Below normal 84%
Normal 30%
Above normal 208%  
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Terminal
Node 1

Class Cases %
1 1 20.0
2 0 0.0
3 4 80.0

Terminal
Node 2

Class Cases %
1 0 0.0
2 8 88.9
3 1 11.1

Terminal
Node 3

Class Cases %
1 2 66.7
2 0 0.0
3 1 33.3

Terminal
Node 4

Class Cases %
1 3 75.0
2 1 25.0
3 0 0.0

Terminal
Node 5

Class Cases %
1 5 22.7
2 15 68.2
3 2 9.1

Node 5
DEC_GUINEA <=   26.0
Class Cases %

1 8 30.8
2 16 61.5
3 2 7.7

Node 4
DEC_GUINEA <=   25.6
Class Cases %

1 10 34.5
2 16 55.2
3 3 10.3

Node 3
DEC_GUINEA <=   25.4
Class Cases %

1 10 26.3
2 24 63.2
3 4 10.5

Terminal
Node 6

Class Cases %
1 0 0.0
2 1 16.7
3 5 83.3

Terminal
Node 7

Class Cases %
1 2 66.7
2 1 33.3
3 0 0.0

Node 6
SCAND_DEC <=    1.6
Class Cases %

1 2 22.2
2 2 22.2
3 5 55.6

Node 2
SCAND_DEC <=    0.9
Class Cases %

1 12 25.5
2 26 55.3
3 9 19.1

Node 1
DEC_GUINEA <=   24.7
Class Cases %

1 13 25.0
2 26 50.0
3 13 25.0

0.05

0.04

0.02 0.03

0.03

0.01

Figure 22.  Pruned January classification tree with a misclassification rate of 48%. 
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Terminal
Node 1

ClassCases %
1 0 0.0
2 3 75.0
3 1 25.0

Terminal
Node 2

ClassCases %
1 0 0.0
2 0 0.0
3 6 100.0

Node 3
JAN_MED <=   16.0
ClassCases %

1 0 0.0
2 3 30.0
3 7 70.0

Terminal
Node 3

ClassCases %
1 0 0.0
2 3 60.0
3 2 40.0

Terminal
Node 4

ClassCases %
1 1 25.0
2 1 25.0
3 2 50.0

Node 5
JAN_PNA <=   -1.1
ClassCases %

1 1 11.1
2 4 44.4
3 4 44.4

Terminal
Node 5

ClassCases %
1 3 15.8
2 14 73.7
3 2 10.5

Node 4
JAN_PNA <=   -0.6
ClassCases %

1 4 14.3
2 18 64.3
3 6 21.4

Node 2
JAN_MED <=   16.2
ClassCases %

1 4 10.5
2 21 55.3
3 13 34.2

Terminal
Node 6

ClassCases %
1 1 25.0
2 3 75.0
3 0 0.0

Terminal
Node 7

ClassCases %
1 8 80.0
2 2 20.0
3 0 0.0

Node 6
JAN_MED <=   16.3
ClassCases %

1 9 64.3
2 5 35.7
3 0 0.0

Node 1
JAN_PNA <=    0.6
ClassCases %

1 13 25.0
2 26 50.0
3 13 25.0

Figure 23.  Pruned February tree with a misclassification rate of 40%. 
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Terminal
Node 1

Class Cases %
1 3 11.5
2 17 65.4
3 6 23.1

Terminal
Node 2

Class Cases %
1 0 0.0
2 1 33.3
3 2 66.7

Terminal
Node 3

Class Cases %
1 6 100.0
2 0 0.0
3 0 0.0

Terminal
Node 4

Class Cases %
1 0 0.0
2 3 100.0
3 0 0.0

Terminal
Node 5

Class Cases %
1 4 80.0
2 1 20.0
3 0 0.0

Node 6
FEB_EA <=    0.9
Class Cases %

1 4 50.0
2 4 50.0
3 0 0.0

Node 5
FEB_EA <=    0.4
Class Cases %

1 10 71.4
2 4 28.6
3 0 0.0

Node 4
FEB_EA <=   -1.2
Class Cases %

1 10 58.8
2 5 29.4
3 2 11.8

Terminal
Node 6

Class Cases %
1 0 0.0
2 3 75.0
3 1 25.0

Node 3
FEB_MED <=   16.2
Class Cases %

1 10 47.6
2 8 38.1
3 3 14.3

Node 2
FEB_MED <=   15.9
Class Cases %

1 13 27.7
2 25 53.2
3 9 19.1

Terminal
Node 7

Class Cases %
1 0 0.0
2 0 0.0
3 5 100.0

Node 1
FEB_SCA <=    1.1
Class Cases %

1 13 25.0
2 25 48.1
3 14 26.9

0.09

0.05

0.04

0.05

0.03

0.05Figure 24.  Pruned March tree with a 
misclassification rate of 44%.  Only three of the 
seven terminal nodes possessed completely pure 
nodes. 
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VI.  Conclusions and Recommendations 
 
 
 
6.1 Conclusions 
 
 
 The goal of this research was to construct a predictive tool for monthly total cloud 

cover over the country of Afghanistan.  Standard statistical methodology was initially 

applied to search for predictive relationships between OLR and SSTs and TIs.  As well, 

surface observational and RTNEPH data were considered as potential predictands.  After 

extensive analysis using linear regression, CART was used to search for nonlinear 

relationships between the previously mentioned variables.  Five of the six specific 

objectives, as stated in Chapter 1 were achieved. 

The first objective consisted of gaining knowledge of the general climate of 

Afghanistan and conducting an overview of the synoptic conditions.  Afghanistan 

possesses mainly arid to semi-arid climates.  There are several regions: the Southwestern 

Lowlands, the Central Highlands (which make up the majority of the country), and the 

Northern Plains. Summers are relatively cloud-free due to the hot conditions brought 

about by the thermal low over southern Asia.  In the fall months, the region experiences a 

change from the average pressure patterns of summer to winter, as the thermal low 

decreases in intensity due to the low angle of the sun as it retreats equatorward.  Most 

extratropical cyclones pass well north of Afghanistan during a good portion of the year.  

During the winter, a semi-permanent high pressure region resides over the Asian 

continental interior bringing extremely cold temperatures to the region.  This time of year 

has the greatest occurrence of cyclones transiting Afghanistan, bringing extensive cloud 

cover with them.  The intensity and coverage of the high pressure system gradually 
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decreases, as well of the frequency of storm tracks, with the passage of the spring months 

and the onset of the thermal low that appears again over the southern portion of Asia in 

the summer months. 

 After gaining an understanding of the climate and synoptic systems that influence 

the region’s weather, a collection of OLR, RTNEPH, surface observational data, 

teleconnection, and sea surface temperature data were assembled (objective 2).  The data 

were based on monthly averages with the greatest attainable POR.  The OLR data were 

also standardized and categorized as below normal/normal/above normal based on a 

distribution of 25%/50%/25%.  This information was implemented in the standard 

statistical analyses, as well as the CART analyses (objectives 3 and 4). 

 The statistical analysis revealed that OLR and surface observational data had a 

relatively strong negative correlation.  Taking into account the larger POR for OLR, it 

was decided the predictand of choice was OLR (as a surrogate for cloud cover). 

Unfortunately, in the regression analysis no significant relationships (yielding low R2 

numbers) between OLR and the predictor variables were discovered (objective 3).  As it 

turned out, seasonality held the largest amount of explained variance, thus data mining 

through CART analysis was undertaken as an additional exploratory tool. 

The use of data mining through CART analysis was accomplished in order to 

extract any useful predictive information from the data that was not uncovered through 

standard statistical means (objective 5).  Classification analysis was performed on the 

cloudier months of the year.  The main findings of the CART research can be viewed in 

Table 5.  Figures 17-23 were also shown to expose the reader to some of the pruned trees.  

The sequences of conditional climatological statements proved to have misclassification 
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rates that were well above the established threshold of 25%.  With the given variables, 

acceptable predictability could not be achieved for forecasting extended-range total 

monthly cloud cover over Afghanistan. 

 
6.2 Recommendations 
 
 
 This research has shown the prospect of using sea surface temperatures and 

teleconnection indices to construct extended-range forecasts for monthly total cloud 

cover.  It was revealed that CART data mining tools have the potential be used as 

forecast decision aids, when traditional statistical analysis fails to produce a predictive 

result.  However, there is still a significant level of uncertainty in extended-range 

forecasting of monthly total cloud cover, by virtue of the high misclassification rates in 

the test sample cross validation.   

Continued research on using CART data mining for atmospheric science 

applications should be pursued and the following are suggestions for future research 

endeavors: 

1.   Acquire larger POR source of either surface observational or RTNEPH data to 

run more robust CART analyses for predicting total cloud cover. 

2.   Investigate possibilities of using other predictor variables in conjunction with 

SSTs and TIs to increase the potential for better improvement scores amongst 

the CART trees. 

3.   Consider the creation of a program to automatically ingest data via the internet 

to produce a cloud cover forecast from computed predictive decision aids.
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Figure A1.  The above correlogram shows the correlation between the monthly Afghanistan OLR observations 
at different time distances apart.  The solid lines represent ±  2 standard errors for approximately 95% 
confidence limits.  This analysis shows OLR data points taken over time may have internal structure (such as 
autocorrelation or seasonal variation) that should be noted.  Thus, it may adequately explain the magnitude of 
the R2 values recorded in Table 4. 

APPENDIX A: Correlogram 
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APPENDIX B: LINEAR REGRESSION RESULTS 
 
 Table 6.  Linear regression results of TIs vs. predictands for the middle month of 

each season.  NAO = North Atlantic Oscillation, POL = Polar/Eurasia, EP = East 
Pacific, EA/WR = East Atlantic/Western Russia, SCA = Scandinavia, ASU = 
Asian Summer. 

 
 
 
 
 R2 P-value RMSE

Jan OLR vs Dec NAO 0.00 0.96 0.98
Jan OLR vs Dec POL 0.01 0.42 0.97
Jan OLR vs Dec EA/WR 0.03 0.23 0.96
Jan OLR vs Dec SCA 0.03 0.27 0.97

Jan Obs vs Dec NAO 0.00 0.81 8.01
Jan Obs vs Dec POL 0.03 0.39 7.91
Jan Obs vs Dec EA/WR 0.12 0.07 7.53
Jan Obs vs Dec SCA 0.02 0.50 7.95

Jan RTNEPH vs Dec NAO 0.06 0.32 9.65
Jan RTNEPH vs Dec POL 0.33 0.01 8.18
Jan RTNEPH vs Dec EA/WR 0.00 0.82 9.95
Jan RTNEPH vs Dec SCA 0.00 0.92 9.96

Apr OLR vs Mar NAO 0.00 0.66 1.01
Apr OLR vs Mar EP 0.15 0.04 0.93
Apr OLR vs Mar EA/WR 0.10 0.03 0.96
Apr OLR vs Mar SCA 0.01 0.61 1.01

Apr Obs vs Mar NAO 0.00 0.79 7.69
Apr Obs vs Mar EP 0.12 0.06 7.21
Apr Obs vs Mar EA/WR 0.00 0.84 7.69
Apr Obs vs Mar SCA 0.04 0.32 7.56

Apr RTNEPH vs Mar NAO 0.08 0.26 8.56
Apr RTNEPH vs Mar EP 0.28 0.02 7.54
Apr RTNEPH vs Mar EA/WR 0.04 0.39 8.71
Apr RTNEPH vs Mar SCA 0.00 0.92 8.91

Jul OLR vs Jun ASU 0.13 0.008 0.94
Jul Obs vs Jun ASU 0.02 0.46 5.52
Jul RTNEPH vs Jun ASU 0.01 0.65 4.15

Oct OLR vs Sep NAO 0.02 0.36 1.00
Oct OLR vs Sep SCA 0.03 0.21 0.99

Oct Obs vs Sep NAO 0.12 0.07 8.68
Oct Obs vs Sep SCA 0.00 0.64 9.21

Oct RTNEPH vs Sep NAO 0.07 0.26 6.74
Oct RTNEPH vs Sep SCA 0.09 0.21 6.67
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 Table 7a.  Linear regression results of SSTs vs. predictands.  Med = 

Mediterranean Sea, Arab = Arabian Sea, Indian = Indian Ocean, 
Guinea = Gulf of Guinea.  Only the middle month of each season 
was used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R2 P-value RMSE
Jan OLR vs Dec Med 0.02 0.37 0.89
Jan OLR vs Dec Arab 0.01 0.43 0.89
Jan OLR vs Dec Indian 0.00 0.94 0.90
Jan OLR vs Dec Guinea 0.09 0.05 0.86

Jan Obs vs Dec Med 0.12 0.07 6.95
Jan Obs vs Dec Arab 0.00 7.40 0.80
Jan Obs vs Dec Indian 0.02 7.32 0.44
Jan Obs vs Dec Guinea 0.03 7.29 0.35

Jan RTNEPH vs Dec Med 0.00 0.79 9.94
Jan RTNEPH vs Dec Arab 0.03 0.46 9.80
Jan RTNEPH vs Dec Indian 0.16 0.10 9.12
Jan RTNEPH vs Dec Guinea 0.00 0.89 9.96

Apr OLR vs Mar Med 0.04 0.17 1.00
Apr OLR vs Mar Arab 0.04 0.15 1.00
Apr OLR vs Mar Indian 0.00 0.69 1.02
Apr OLR vs Mar Guinea 0.01 0.55 1.02

Apr Obs vs Mar Med 0.00 0.79 7.69
Apr Obs vs Mar Arab 0.02 0.46 7.62
Apr Obs vs Mar Indian 0.02 0.42 7.60
Apr Obs vs Mar Guinea 0.05 0.24 7.50

Apr RTNEPH vs Mar Med 0.01 0.72 8.88
Apr RTNEPH vs Mar Arab 0.00 0.84 8.91
Apr RTNEPH vs Mar Indian 0.00 0.91 8.91
Apr RTNEPH vs Mar Guinea 0.18 0.08 8.10
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Table 7b.  Regression results of SSTs vs. predictands for 
selected months. 

R2 P-value RMSE
Jul OLR vs Jun Med 0.07 0.07 0.95
Jul OLR vs Jun Arab 0.05 0.12 0.96
Jul OLR vs Jun Indian 0.00 0.94 0.99
Jul OLR vs Jun Guinea 0.07 0.06 0.95

Jul Obs vs Jun Med 0.01 0.60 5.55
Jul Obs vs Jun Arab 0.00 0.90 5.58
Jul Obs vs Jun Indian 0.01 0.59 5.55
Jul Obs vs Jun Guinea 0.04 0.27 5.45

Jul RTNEPH vs Jun Med 0.34 0.01 3.38
Jul RTNEPH vs Jun Arab 0.09 0.22 3.99
Jul RTNEPH vs Jun Indian 0.13 0.13 3.89
Jul RTNEPH vs Jun Guinea 0.12 0.15 3.91

Oct OLR vs Sep Med 0.01 0.51 1.00
Oct OLR vs Sep Arab 0.01 0.43 1.00
Oct OLR vs Sep Indian 0.01 0.58 1.00
Oct OLR vs Sep Guinea 0.00 0.64 1.01

Oct Obs vs Sep Med 0.00 0.87 9.25
Oct Obs vs Sep Arab 0.18 0.03 8.26
Oct Obs vs Sep Indian 0.08 0.14 8.86
Oct Obs vs Sep Guinea 0.01 0.57 9.19

Oct RTNEPH vs Sep Med 0.01 0.66 6.96
Oct RTNEPH vs Sep Arab 0.00 0.94 7.01
Oct RTNEPH vs Sep Indian 0.00 0.84 7.00
Oct RTNEPH vs Sep Guinea 0.00 0.98 7.01
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R2 P-value RMSE
Jan OLR vs Dec Med & Dec NAO 0.02 0.65 0.90
Jan OLR vs Dec Med & Dec POL 0.03 0.48 0.90
Jan OLR vs Dec Med & Dec EA/WR 0.03 0.57 0.90
Jan OLR vs Dec Med & Dec SCA 0.03 0.47 0.90

Jan OLR vs Dec Arab & Dec NAO 0.01 0.73 0.91
Jan OLR vs Dec Arab & Dec POL 0.04 0.43 0.89
Jan OLR vs Dec Arab & Dec EA/WR 0.02 0.68 0.90
Jan OLR vs Dec Arab & Dec SCA 0.02 0.59 0.90

Jan OLR vs Dec Indian & Dec NAO 0.00 0.96 0.91
Jan OLR vs Dec Indian & Dec POL 0.02 0.65 0.90
Jan OLR vs Dec Indian & Dec EA/WR 0.00 0.93 0.91
Jan OLR vs Dec Indian & Dec SCA 0.01 0.80 0.91

Jan OLR vs Dec Guinea & Dec NAO 0.09 0.14 0.87
Jan OLR vs Dec Guinea & Dec POL 0.12 0.07 0.86
Jan OLR vs Dec Guinea & Dec EA/WR 0.10 0.10 0.86
Jan OLR vs Dec Guinea & Dec SCA 0.10 0.11 0.87

Table 8a.  Multiple regression results for January 
OLR vs. December predictors. 
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R2 P-value RMSE
Jan Obs vs Dec Med & Dec NAO 0.12 0.20 7.09
Jan Obs vs Dec Med & Dec POL 0.15 0.13 6.97
Jan Obs vs Dec Med & Dec EA/WR 0.21 0.05 6.73
Jan Obs vs Dec Med & Dec SCA 0.13 0.19 7.07

Jan Obs vs Dec Arab & Dec NAO 0.00 0.96 7.54
Jan Obs vs Dec Arab & Dec POL 0.05 0.56 7.38
Jan Obs vs Dec Arab & Dec EA/WR 0.09 0.32 7.23
Jan Obs vs Dec Arab & Dec SCA 0.00 0.96 7.55

Jan Obs vs Dec Indian & Dec NAO 0.03 0.66 7.44
Jan Obs vs Dec Indian & Dec POL 0.06 0.46 7.33
Jan Obs vs Dec Indian & Dec EA/WR 0.12 0.21 7.10
Jan Obs vs Dec Indian & Dec SCA 0.02 0.73 7.47

Jan Obs vs Dec Guinea & Dec NAO 0.03 0.64 7.43
Jan Obs vs Dec Guinea & Dec POL 0.07 0.37 7.26
Jan Obs vs Dec Guinea & Dec EA/WR 0.10 0.29 7.20
Jan Obs vs Dec Guinea & Dec SCA 0.04 0.64 7.42

Table 8b.  Multiple regression results for January 
surface observational data vs. December predictors. 
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R2 P-value RMSE
Jan RTNEPH vs Dec Med & Dec NAO 0.08 0.54 9.88
Jan RTNEPH vs Dec Med & Dec POL 0.33 0.05 8.45
Jan RTNEPH vs Dec Med & Dec EA/WR 0.01 0.95 10.25
Jan RTNEPH vs Dec Med & Dec SCA 0.01 0.95 10.25

Jan RTNEPH vs Dec Arab & Dec NAO 0.08 0.54 9.88
Jan RTNEPH vs Dec Arab & Dec POL 0.33 0.05 8.43
Jan RTNEPH vs Dec Arab & Dec EA/WR 0.04 0.75 10.10
Jan RTNEPH vs Dec Arab & Dec SCA 0.03 0.77 10.10

Jan RTNEPH vs Dec Indian & Dec NAO 0.16 0.27 9.42
Jan RTNEPH vs Dec Indian & Dec POL 0.44 0.01 7.68
Jan RTNEPH vs Dec Indian & Dec EA/WR 0.17 0.26 9.40
Jan RTNEPH vs Dec Indian & Dec SCA 0.18 0.23 9.32

Jan RTNEPH vs Dec Guinea & Dec NAO 0.06 0.62 10.00
Jan RTNEPH vs Dec Guinea & Dec POL 0.33 0.05 8.45
Jan RTNEPH vs Dec Guinea & Dec EA/WR 0.01 0.95 10.26
Jan RTNEPH vs Dec Guinea & Dec SCA 0.00 0.99 10.28

Table 8c.  Multiple regression results for January 
RTNEPH data vs. December predictors. 
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R2 P-value RMSE
Apr OLR vs Mar Med & Mar NAO 0.04 0.40 1.01
Apr OLR vs Mar & Mar EP 0.18 0.01 0.94
Apr OLR vs Mar Med & Mar EA/WR 0.13 0.05 0.97
Apr OLR vs Mar Med & Mar SCA 0.06 0.25 1.01

Apr OLR vs Mar Arab & Mar NAO 0.05 0.35 1.01
Apr OLR vs Mar Arab & Mar EP 0.18 0.01 0.95
Apr OLR vs Mar Arab & Mar EA/WR 0.13 0.04 0.97
Apr OLR vs MAr Arab & Mar SCA 0.05 0.33 1.01

Apr OLR vs Mar Indian & Mar NAO 0.01 0.88 1.04
Apr OLR vs Mar Indian & Mar EP 0.15 0.03 0.96
Apr OLR vs Mar Indian & Mar EA/WR 0.11 0.08 0.98
Apr OLR vs Mar Indian & Mar SCA 0.01 0.78 1.03

Apr OLR vs Mar Guinea & Mar NAO 0.01 0.73 1.03
Apr OLR vs Mar Guinea & Mar EP 0.16 0.02 0.95
Apr OLR vs Mar Guinea & Mar EA/WR 0.12 0.06 0.97
Apr OLR vs Mar Guinea & Mar SCA 0.02 0.69 1.03

Table 9a.  Multiple regression results for April OLR vs. 
March predictors. 
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R2 P-value RMSE
Apr Obs vs Mar Med & Mar NAO 0.01 0.93 7.83
Apr Obs vs Mar & Mar EP 0.12 0.18 7.34
Apr Obs vs Mar Med & Mar EA/WR 0.00 0.95 7.83
Apr Obs vs Mar Med & Mar SCA 0.04 0.62 7.70

Apr Obs vs Mar Arab & Mar NAO 0.02 0.77 7.77
Apr Obs vs Mar Arab & Mar EP 0.15 0.13 7.25
Apr Obs vs Mar Arab & Mar EA/WR 0.02 0.75 7.76
Apr Obs vs MAr Arab & Mar SCA 0.07 0.37 7.56

Apr Obs vs Mar Indian & Mar NAO 0.02 0.72 7.75
Apr Obs vs Mar Indian & Mar EP 0.17 0.08 7.14
Apr Obs vs Mar Indian & Mar EA/WR 0.02 0.72 7.75
Apr Obs vs Mar Indian & Mar SCA 0.07 0.39 7.57

Apr Obs vs Mar Guinea & Mar NAO 0.07 0.41 7.58
Apr Obs vs Mar Guinea & Mar EP 0.15 0.12 7.23
Apr Obs vs Mar Guinea & Mar EA/WR 0.06 0.45 7.60
Apr Obs vs Mar Guinea & Mar SCA 0.09 0.30 7.50

Table 9b.  Multiple regression results for April surface 
observational data vs. March predictors. 

 78



Table 9c.  Multiple regression results for April 
RTNEPH data vs. March predictors. 

R2 P-value RMSE
Apr RTNEPH vs Mar Med 0.01 0.72 8.88
Apr RTNEPH vs Mar Arab 0.00 0.84 8.91
Apr RTNEPH vs Mar Indian 0.00 0.91 8.91
Apr RTNEPH vs Mar Guinea 0.18 0.08 8.10

Apr RTNEPH vs Mar Med & Mar NAO 0.08 0.53 8.83
Apr RTNEPH vs Mar Med & Mar EP 0.29 0.08 7.78
Apr RTNEPH vs Mar Med & Mar EA/WR 0.05 0.68 8.97
Apr RTNEPH vs Mar Med & Mar SCA 0.01 0.93 9.16

Apr RTNEPH vs Mar Arab & Mar NAO 0.09 0.51 8.80
Apr RTNEPH vs Mar Arab & Mar EP 0.29 0.08 7.78
Apr RTNEPH vs Mar Arab & Mar EA/WR 0.05 0.68 8.98
Apr RTNEPH vs Mar Arab & Mar SCA 0.00 0.97 9.19

Apr RTNEPH vs Mar Indian & Mar NAO 0.09 0.50 8.80
Apr RTNEPH vs Mar Indian & Mar EP 0.30 0.07 7.69
Apr RTNEPH vs Mar Indian & Mar EA/WR 0.05 0.70 9.00
Apr RTNEPH vs Mar Indian & Mar SCA 0.00 0.98 9.20

Apr RTNEPH vs Mar Guinea & Mar NAO 0.24 0.13 8.05
Apr RTNEPH vs Mar Guinea & Mar EP 0.39 0.02 7.17
Apr RTNEPH vs Mar Guinea & Mar EA/WR 0.37 0.03 7.31
Apr RTNEPH vs Mar Guinea & Mar SCA 0.18 0.22 8.32
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Table 10.  Multiple regression results for July predictands vs 
June predictors.  

R2 P-value RMSE
Jul OLR vs Jun Med & Jun ASU 0.20 0.01 0.89
Jul OLR vs Jun Arab & Jun ASU 0.16 0.02 0.91
Jul OLR vs Jun Indian & Jun ASU 0.15 0.02 0.92
Jul OLR vs Jun Guinea & Jun ASU 0.20 0.01 0.89

Jul Obs vs Jun Med & Jun ASU 0.04 0.61 5.58
Jul Obs vs Jun Arab & Jun ASU 0.04 0.63 5.87
Jul Obs vs Jun Indian & Jun ASU 0.04 0.63 5.89
Jul Obs vs Jun Guinea & Jun ASU 0.09 0.31 5.44

Jul RTNEPH vs Jun Med & Jun ASU 0.36 0.04 3.46
Jul RTNEPH vs Jun Arab & Jun ASU 0.09 0.48 4.11
Jul RTNEPH vs Jun Indian & Jun ASU 0.15 0.29 0.04
Jul RTNEPH vs Jun Guinea & Jun ASU 0.12 0.37 4.04
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R P- R
O 0 0 1
O 0 0 1

Oc 0 0 1
O 0 0 1

O 0 0 1
O 0 0 1

Oc 0 0 1
O 0 0 1

O 0 0 8
O 0 0 9

O 0 0 8
O 0 0 8

O 0 0 8
O 0 0 9

O 0 0 8
O 0 0 9

O 0 0 6
O 0 0 6

O 0 0 6
O 0 0 6

O 0 0 6
O 0 0 6

O 0 0 6
O 0 0 6

Table 11.  Multiple regression results for October predictands 
vs September predictors. 

2 value MSE
ct OLR vs Sep Med & Sep NAO .02 .36 .00
ct OLR vs Sep Med & Sep SCA .03 .48 .00

t OLR vs Sep Arab & Sep NAO .02 .57 .01
ct OLR vs Sep Arab & Sep SCA .04 .40 .00

ct OLR vs Sep Indian & Sep NAO .02 .71 .01
ct OLR vs Sep Indian & Sep SCA .03 .49 .00

t OLR vs Sep Guinea & Sep NAO .02 .67 .01
ct OLR vs Sep Guinea & Sep SCA .03 .49 .00

ct Obs vs Sep Med & Sep NAO .12 .20 .46
ct Obs vs Dec Med & Sep SCA .01 .87 .38

ct Obs vs Sep Arab & Sep NAO .28 .02 .01
ct Obs vs Sep Arab & Sep SCA .18 .08 .53

ct Obs vs Sep Indian & Sep NAO .19 .08 .51
ct Obs vs Sep Indian & Sep SCA .09 .32 .02

ct Obs vs Sep Guinea & Sep NAO .14 .15 .75
ct Obs vs Sep Guinea & Sep SCA .02 .79 .35

ct RTNEPH vs Sep Med & Sep NAO .09 .50 .92
ct RTNEPH vs Dec Med & Sep SCA .10 .47 .89

ct RTNEPH vs Sep Arab & Sep NAO .08 .54 .95
ct RTNEPH vs Sep Arab & Sep SCA .10 .46 .88

ct RTNEPH vs Sep Indian & Sep NAO .08 .52 .93
ct RTNEPH vs Sep Indian & Sep SCA .10 .45 .87

ct RTNEPH vs Sep Guinea & Sep NAO .08 .53 .94
ct RTNEPH vs Sep Guinea & Sep SCA .10 .46 .88
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APPENDIX C: CART RESULTS FOR BAGHDAD, IRAQ 

Terminal
Node 1

ClassCases %
1 1 12.5
2 1 12.5
3 6 75.0

Terminal
Node 2

ClassCases %
1 2 100.0
2 0 0.0
3 0 0.0

Terminal
Node 3

ClassCases %
1 3 11.1
2 21 77.8
3 3 11.1

Node 3
POL_DEC <=   -2.0
ClassCases %

1 5 17.2
2 21 72.4
3 3 10.3

Terminal
Node 4

ClassCases %
1 6 85.7
2 1 14.3
3 0 0.0

Terminal
Node 5

ClassCases %
1 1 20.0
2 0 0.0
3 4 80.0

Terminal
Node 6

ClassCases %
1 0 0.0
2 4 100.0
3 0 0.0

Node 5
DEC_TNH <=    0.1
ClassCases %

1 1 11.1
2 4 44.4
3 4 44.4

Node 4
DEC_MED <=   18.0
ClassCases %

1 7 43.8
2 5 31.3
3 4 25.0

Node 2
POL_DEC <=    0.5
ClassCases %

1 12 26.7
2 26 57.8
3 7 15.6

Node 1
DEC_MED <=   17.7
ClassCases %

1 13 24.5
2 27 50.9
3 13 24.5

0.09

0.07

0.06 0.06

0.07

Figure C1.  This January classification tree for Baghdad, Iraq OLR had a misclassification rate of 
36%. Terminal nodes 2,4, and 6 were purer nodes considering the resultant cases where in 
adjacent nodes or the nodes consisted of only one class. 
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Terminal
Node 1

ClassCases %
1 0 0.0
2 8 100.0
3 0 0.0

Terminal
Node 2

ClassCases %
1 0 0.0
2 1 33.3
3 2 66.7

Terminal
Node 3

ClassCases %
1 5 100.0
2 0 0.0
3 0 0.0

Node 4
JAN_TNH <=    0.2
ClassCases %

1 5 62.5
2 1 12.5
3 2 25.0

Terminal
Node 4

ClassCases %
1 0 0.0
2 0 0.0
3 5 100.0

Node 3
JAN_TNH <=    1.0
ClassCases %

1 5 38.5
2 1 7.7
3 7 53.8

Terminal
Node 5

ClassCases %
1 6 20.7
2 18 62.1
3 5 17.2

Terminal
Node 6

ClassCases %
1 2 66.7
2 0 0.0
3 1 33.3

Node 5
JAN_MED <=   17.0
ClassCases %

1 8 25.0
2 18 56.3
3 6 18.8

Node 2
JAN_SCA <=   -0.6
ClassCases %

1 13 28.9
2 19 42.2
3 13 28.9

Node 1
JAN_TNH <=   -1.2
ClassCases %

1 13 24.5
2 27 50.9
3 13 24.5

0.04

0.04

0.020.02

0.04

Figure C2.  The February classification tree for Baghdad, Iraq OLR had a misclassification rate of 
45%.  The cross validation test sample had tree accuracy rates for Class 1,2, and 3 of 23%, 81%, 
and 31%, respectively.  
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Terminal
Node 1

ClassCases %
1 1 8.3
2 4 33.3
3 7 58.3

Terminal
Node 2

ClassCases %
1 5 100.0
2 0 0.0
3 0 0.0

Node 2
FEB_MED <=   16.0
ClassCases %

1 6 35.3
2 4 23.5
3 7 41.2

Terminal
Node 3

ClassCases %
1 0 0.0
2 0 0.0
3 2 100.0

Terminal
Node 4

ClassCases %
1 5 83.3
2 1 16.7
3 0 0.0

Node 4
FEB_EA_WR <=    0.2
ClassCases %

1 5 62.5
2 1 12.5
3 2 25.0

Terminal
Node 5

ClassCases %
1 2 7.1
2 21 75.0
3 5 17.9

Node 3
FEB_MED <=   15.5
ClassCases %

1 7 19.4
2 22 61.1
3 7 19.4

Node 1
FEB_EA_WR <=   -0.4
ClassCases %

1 13 24.5
2 26 49.1
3 14 26.4

0.03

0.07 0.05

0.02

Figure C3.  The March classification tree for Baghdad, Iraq OLR had a misclassification rate of 40%.  
The cross validation test sample had tree accuracy rates for Class 1,2, and 3 of 62%, 77%, and 29%, 
respectively. 
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